

《大学物理实验》 基础物理实验绪论

物理实验教学中心 2018-3

第二章 测量的不确定度和数据处理

误差

• 测量

- 直接测量:长度,质量,时间等
- 间接测量: 重力加速度,速度等
- 等精度测量:同人、同法、同仪器、同环境、同条件对同物进行多次测量
- 真值: 物理量的真实值(一般不知道)
- 测量的正确度、精密度、精确度
 - 结果比较接近客观实际的测量: 正确度高,表示系统误差的大小
 - 结果彼此相近的测量:精密度高,随机性的大小(弥散程度)
 - 既正确又精密的测量: 精确度高(系统误差和随机误差的大小)
- 测量误差=测量值-真值

正确度、精密度、准确度

- 正确度:测量值与真值的接近程度。反映测量结果系统误差大小的术语。
- 精密度: 重复测量所得测量结果相互接近的程度。反映测量结果随机误差大小的术语。
- 精确度:综合评定测量结果的重复性和接近真值的程度。 反映随机误差和系统误差的综合效果。

误差的来源

• 方法误差

测量方法或测量原理本身所引起的

• 仪器误差

测量设备或仪器本身固有的各种因素的影响

• 环境误差

周围环境的影响

• 主观误差

测量操作人员的素质影响

误差类别

- ●系统误差
 - 公式近似
 - 仪器结构不完善
 - 环境条件: 环境误差
 - 生理、心理因素
 - 特点: 恒定, 经验积累减小误差
 - 偶然误差: 随机性

系统误差

公式近似: 理论误差

$$T = 2\pi \sqrt{\frac{l}{g}}$$

单摆:
$$T = 2\pi \sqrt{\frac{l}{g}} (1 + \frac{1}{4} \sin^2 \frac{\theta}{2} + \cdots)$$
 $A = 1, \theta = 0$ $A = 1.0005, \theta = 5^\circ$

$$A = 1, \theta = 0$$

 $A = 1.0005, \theta = 5^{\circ}$

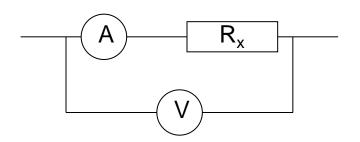
绝热系统:补偿法

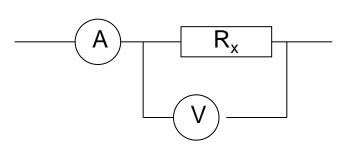
内接法

 $R_{_{X}} > \sqrt{R_{_{A}} \cdot R_{_{V}}}$

伏安法测电阻

$$R_{x} < \sqrt{R_{A} \cdot R_{V}}$$





系统误差

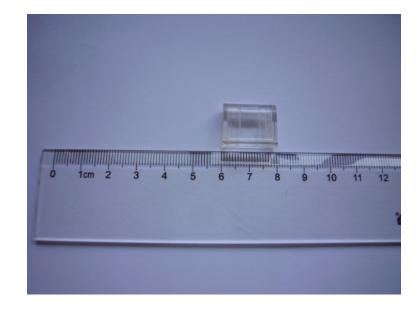
-仪器;

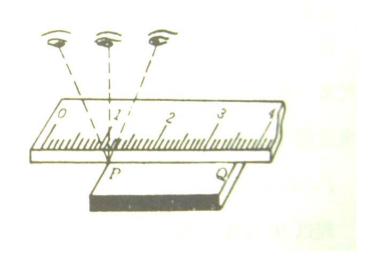
结构不完善 螺旋测微计零点不准确 (校准)

天平不等臂(交换)

系统误差

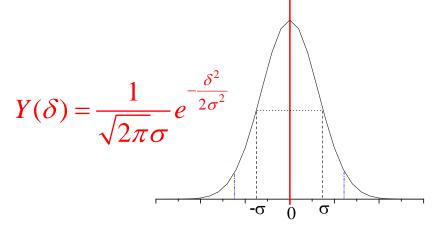
-个人误差: 生理、心理因; 按钮超前、滞后, 斜视



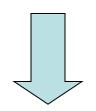


• 偶然误差

特点: 随机性,服从正态分 有(单峰、对称、有界、抵 偿性) $Y(\delta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\delta^2}{2\sigma^2}}$



• 抵偿性: 多次测量,增加测量次数



• 减小偶然误差但不能消除

服从正态分布的系统误差特征: 对称性、单峰性、有界性

$$\int_{-\sigma}^{\sigma} Y(\delta)d\delta = 0.683$$

$$\int_{-2\sigma}^{2\sigma} Y(\delta)d\delta = 0.954$$

$$\int_{-3\sigma}^{3\sigma} Y(\delta)d\delta = 0.997$$

$$\int_{-\infty}^{\infty} Y(\delta) d\delta = 1$$

测量误差=测量值-真值

一般不知道!!

$$Y = N \pm \Delta N$$

如何描述?

测量误差→不确定度

$$Y = N \pm U_P$$

测量不确定度

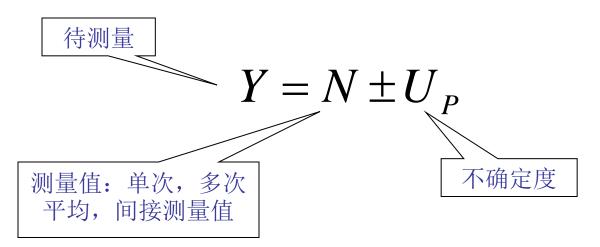
A类不确定度:

由观测列统计分析评定,也称统计不确定度(多次等精度测量)

B类不确定度:

不用统计分析评定,也称非统计不确定度。 每次测量都应考虑B类不确定度。

物理量Y



不确定度:代表测量值N不确定的程度,也是对测量误差的可能值的测度,对待测真值可能存在的范围的估计。

测量结果范围: $[N-U_p, N+U_p]$ 置信区间大,置信概率大

置信概率: 100%, Δ N: 极限不确定度, $Y = N \pm \Delta N$

相对不确定度:
$$\frac{\Delta N}{N}$$

不确定度的估计

直接测量结果的不确定度:

平均值
$$\overline{N} = \frac{1}{n} \sum_{i=1}^{n} N_i$$

定义(贝塞尔公式):
$$\sigma_N = \sqrt{\frac{\displaystyle\sum_{i=1}^n (N_i - \overline{N})^2}{n-1}}$$

3σ称极限误差.测量次数无限多时,测量误差的绝对值大于3σ的概 率仅为0.3%,对于有限次测量,这种可能性是微乎其微,因此可以认 为是测量失误,应予以剔除.

$$u_A = \frac{\sigma_N}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^n (N_i - \overline{N})^2}{n(n-1)}}$$

平均值的标准差

对正态分布:

$$P\left(\overline{x} \in \left[\overline{x} - u_A, \overline{x} + u_A\right]\right) = 0.683$$

$$P\left(\overline{x} \in \left[\overline{x} - 2u_A, \overline{x} + 2u_A\right]\right) = 0.954$$

$$P\left(\overline{x} \in \left[\overline{x} - 3u_A, \overline{x} + 3u_A\right]\right) = 0.997$$

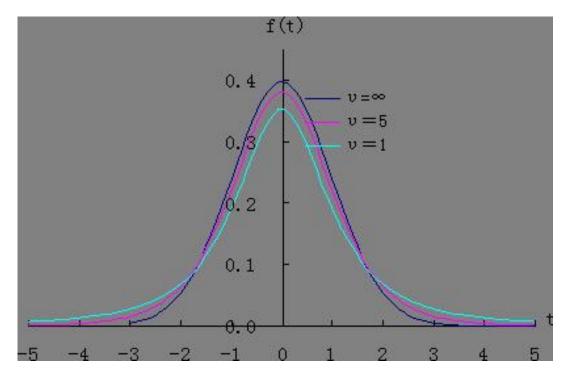
测量次数很少时,不确定度的修正

$$u_t = t_p u_A$$

扩大置信区间

$$\left| -t_p u_A, t_p u_A \right|$$

获得相同的概率



t_p与测量次数有关 见: P30

n/t/p	3	4	5	6	7	8	9	10	8
0.68	1.32	1.20	1.14	1.11	1.09	1.08	1.07	1.06	1
0.90	2.92	2.35	2.13	2.02	1.94	1.86	1.83	1.76	1.65
0.95	4.30	3.18	2.78	2.57	2.46	2.37	2.31	2.26	1.96
0.99	9.93	5.84	4.60	4.03	3.71	3.50	3.36	3.25	2, 58

课堂小实验:时间的统计分布

- 用手机连接名称为ustcnet的校内WIFI
- 登录网址: http://202.38.85.52/web;
- 点击"学生登陆"按钮;
- 或通过扫描右侧二维码进入系统,
- 输入老师设置的"课程号";
- 待全班登录完成后, 教师关闭登录权限;
- 依次点击"开始计时、停止计时、提交结果", 记录节拍器相邻两个铃声之间的时间间隔,并上 传你的测量结果。每人至少测量并上传10次;
- 观察统计的时间分布是否符合正态分布。

B类不确定度

不能用统计方法来处理的不确定度均为 B类不确定度,如**单次测量**

- 仪器的最大允差
- 估计误差

❖测量仪器的最大允差 △_{仪器}

包含了仪器的系统误差,也包含了环境以及测量者自身可能出现的变化(具随机性)对测量结果的影响。最大允差可从仪器说明书中得到,它表征同一规格型号的合格产品,在正常使用条件下,可能产生的最大误差。一般而言,为仪器最小刻度所对应的物理量的数量级(但不同仪器差别很大)。(第26页)

各种仪器的最大允差

- 指针电表级别: 5.0,2.0,1.5,1.0,0.5,0.2,0.1
- 指针电表: 量程×级别%
- 数字电表:读数× C%+稳定显示后一位的几个单位
- 钢卷尺: 1m/1mm/+-0.8mm,2m/1mm/+-1.2mm
- 游标卡尺: 125mm/0.02mm/+-0.02mm 300mm/0.02mm/+-0.05mm
- 螺旋测微器: 25mm/0.01mm/+-0.004mm

❖测量仪器的最大允差

模拟式仪表:

 $\Delta_{\text{\tiny QL}} = 量程×级别%$

例:量程为100伏的1.0级电压表,测量一个电池的电动势为1.5V。则仪表的最大允差为1.0V。若量程为10伏,则降低到0.1V。

数字式仪表: $\Delta_{\chi_{\rm B}}$ =读数×C% + 稳定显示后一位的几个单位

例:某精度为1.0级的三位半电表,用20.0伏量程测量电池电动势,读数为1.50V.按其说明书,读数乘级别的1%,假设末位数字跳动5个单位,则测量结果的最大允差为:

(0.015+0.05) = 0.065 V.

改用2V量程,则为(0.015+0.005) = 0.020 V。

❖测量时的估计误差 $\Delta_{\text{估计}}$

模拟式仪表: Δ_{dit} <最小分度的一半

数字式仪表: $\Delta_{\text{dit}} = 0$

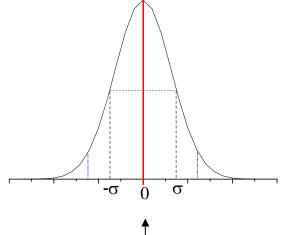
❖B类不确定度的最大值

$$\Delta_{\mathrm{B}} = \sqrt{{\Delta_{\dot{\mathrm{Q}}}}^2 + {\Delta_{\dot{\mathrm{f}}}}^2}$$

❖B类标准不确定度(68.3%)

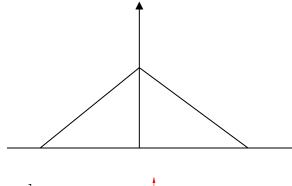
$$u_B = \frac{\Delta_B}{C}$$

置信系数C与仪器测量误差的分布概率有关



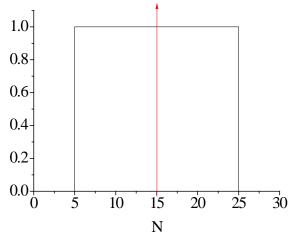
正态分布:

$$C = 3, [-u_B, u_B], P = 0.68$$



三角分布:

$$C = \sqrt{6}, [-u_B, u_B], P = 0.65$$



均匀分布:

$$C = \sqrt{3}, [-u_B, u_B], P = 0.58$$

几种常见仪器的误差分布与置信系数

仪器	米尺	游标卡尺	千分尺	物理天平	秒表
误差分布	正态	均匀	正态	正态	正态
置信系数C	3	$\sqrt{3}$	3	3	3

❖B类展伸不确定度

$$k_P \frac{\Delta_B}{C}$$

P32

P	0.500	0.683	0.900	0.950	0. 955	0.990	0. 997
k_P (正态分布)	0. 68	1.00	1.65	1. 96	2.00	2. 58	3.00

不同分布测量仪器的置信概率P与置信因子Kp

Kp P	0.500	0.577	0.650	0.683	0.900	0.950	0.955	0.990	0.997
正态分布	0.675			1.000	1.650	1.960	2.000	2.580	3.000
均匀分布	0.877	1.000		1.183	1.559	1.645	1.654	1.715	1.727
三角分布	0.717	0.862	1.000	1.064	1.675	1.901	1.929	2.204	2.315

合成标准不确定度 $U = \sqrt{u_A^2 + u_B^2}$

$$U = \sqrt{u_A^2 + u_B^2}$$

P = 0.68

$$U_{0.68} = \sqrt{\left(\mathbf{t}_{0.68}u_A\right)^2 + u_B^2} = \sqrt{\left(\mathbf{t}_{0.68}u_A\right)^2 + \left(k_{0.68} \cdot \Delta_B/\mathbf{C}\right)^2}$$

展伸不确定度

$$U_{\rm P} = \sqrt{\left(t_{\rm P} u_A\right)^2 + \left(k_{\rm P} \Delta_{\rm B}/C\right)^2}$$

相同置信概率的不确定度才可 以按平方和来合成

$$U_{0.68} = \sqrt{\left(\mathbf{t}_{0.68}u_{A}\right)^{2} + \left(\frac{k_{0.68}\Delta_{B}}{C}\right)^{2}}$$

$$U_{0.95} = \sqrt{\left(\mathbf{t}_{0.95}u_{A}\right)^{2} + \left(\frac{k_{0.95}\Delta_{B}}{C}\right)^{2}}$$

$$U_{0.99} = \sqrt{\left(\mathbf{t}_{0.99}u_{A}\right)^{2} + \left(\frac{k_{0.99}\Delta_{B}}{C}\right)^{2}}$$

相同置信概率的不确定度才可以按平方和来合成

测量结果的表示:

$$X = (\overline{X} \pm U_{0.95})$$
 单位 (P=0.95)

如果没有标明置信水平,则默认P=0.95

例:用千分尺测量一个球的直径,测量了10次,结果如下:

$$\overline{D}$$
 = 12.345 *mm* $n = 10$

$$\sigma = 0.008 \quad mm \qquad \Delta_{R} = 0.004 \quad mm$$

$$U_{0.95} = \sqrt{\left(2.26 \times \frac{0.008}{\sqrt{10}}\right)^2 + \left(1.96 \times \frac{0.004}{3}\right)^2} = 0.007 \quad \text{mm}$$

$$D = (12.345 \pm 0.007)$$
 mm $(P = 0.95)$

测量结果的表示

间接测量: 不确定度的传递

间接测量物理量: $y = f(x_1, x_2, \cdots)$

- 对函数求全微分或先取对数再求微分
- 合并同类项
- 将微分符号改成不确定度符号
- 各项平方和

$$\rho = \frac{m}{m - m_1} \rho_0$$

两边取对数得:

$$\ln \rho = \ln m + \ln \rho_0 - \ln(m - m_1)$$

求全微分得:

$$\frac{d\rho}{\rho} = \frac{dm}{m} + \frac{d\rho_0}{\rho_0} - \frac{d(m - m_1)}{m - m_1}$$

$$\frac{d\rho}{\rho} = \frac{dm}{m} + \frac{d\rho_0}{\rho_0} - \frac{dm}{m - m_1} + \frac{dm_1}{m - m_1}$$

合并同类项:

$$\frac{d\rho}{\rho} = \frac{-m_1 dm}{m(m-m_1)} + \frac{d\rho_0}{\rho_0} + \frac{dm_1}{m-m_1}$$

• 微分号变为不确定度
$$\frac{u_{\rho}}{\rho} = \sqrt{\left[\frac{-m_1}{m(m-m_1)}\right]^2 u_m^2 + \frac{u_{\rho_0}^2}{\rho_0^2} + \left(\frac{1}{m-m_1}\right)^2 u_{m_1}^2}$$

常用函数不确定度传递公式

函数表达式

传递(合成)公式

$$W = x \pm y$$

$$U_x = \sqrt{U_x^2 + U_y^2}$$

$$W = x \cdot y$$

$$U_{W}/W = \sqrt{(U_{x}/x)^{2} + (U_{y}/y)^{2}}$$

$$W = \frac{x}{y}$$

$$U_{W}/W = \sqrt{(U_{x}/x)^{2} + (U_{y}/y)^{2}}$$

$$W = x^k y^n / z^m$$

$$U_W/W = \sqrt{k^2 (U_x/x)^2 + n^2 (U_y/y)^2 + m^2 (U_z/z)^2}$$

$$W = kx$$

$$U_W = kU_x, U_W/W = U_x/x$$

$$W = k\sqrt{x}$$

$$U_{W}/W = 1/2U_{x}/x$$

$$W = \sin x$$

$$U_{w} = |\cos x| U_{x}$$

$$W = \ln x$$

$$U_W = U_x / \chi$$

最大不确定度(仅用于设计!)

在很多情况下,往往只需粗略估计不确定的大小,可采用较为保守的线性(算术)合成法则

$$\Delta w = \left| \frac{\partial f}{\partial x} \right| \cdot \Delta x + \left| \frac{\partial f}{\partial y} \right| \cdot \Delta y + \left| \frac{\partial f}{\partial z} \right| \cdot \Delta z + \cdots$$

$$\frac{\Delta w}{w} = \left| \frac{\partial \ln f}{\partial x} \right| \cdot \Delta x + \left| \frac{\partial \ln f}{\partial y} \right| \cdot \Delta y + \left| \frac{\partial \ln f}{\partial z} \right| \cdot \Delta z + \cdots$$

标准不确定度: L=2.35±0.01(cm)

最大不确定度: L=2.35±0.05(cm)

常用函数的最大不确定度算术合成公式

物理量的函数式

$$W = x + y + z + \cdots$$

$$W = x \pm y$$

$$W = kx$$
 (k 为常数)

$$W = x \cdot y$$

$$W = x^n, (n = 1, 2, 3, \cdots)$$

$$W = \frac{x}{y}$$

$$W = \sin x$$

$$W = \tan x$$

$$W = \ln x$$

最大不确定度

$$\Delta x + \Delta y + \Delta z + \cdots$$

$$\Delta x + \Delta y$$

$$k\Delta x$$

$$x\Delta y + y\Delta x$$

$$nx^{n-1}\Delta x$$

$$\frac{y\Delta x + x\Delta y}{y^2}$$

$$\cos x \cdot \Delta x$$

$$\frac{\Delta x}{\cos^2 x}$$

$$\frac{\Delta x}{x}$$

相对不确定度

$$\frac{\Delta x + \Delta y + \Delta z + \cdots}{x + y + z + \cdots}$$

$$\frac{\Delta x + \Delta y}{x \pm y}$$

$$\frac{\Delta x}{x}$$

$$\frac{\Delta x}{x} + \frac{\Delta y}{y}$$

$$n\frac{\Delta x}{x}$$

$$\frac{\Delta x}{x} + \frac{\Delta y}{y}$$

$$\cot x \cdot \Delta x$$

$$\frac{2\Delta x}{\sin 2x}$$

$$\frac{x}{x \ln x}$$

不确定度分析的意义

不确定度表征测量结果的可靠程度,反映测量的精密度。更重要的是人们在接受一项测量任务时,要根据对测量不确定度的要求设计实验方案,选择仪器和实验环境。在实验过程和实验后,通过对不确定度大小及其成因的分析,找到影响实验精确度的原因并加以校正。

小球直径: 12.345±0.006cm [12.339,12.351] P=0.68

最大偏差: ±0.018cm; P=1

不确定度均分原理

在间接测量中,每个独立测量量的不确定度都会对最终结果的不确定度有贡献。如果已知各测量量之间的函数关系,可写出不确定度传递公式,并按均分原理,将测量结果的总不确定度均匀分配到各个分量中,由此分析各物理量的测量方法和使用的仪器,指导实验。

一般而言,这样做比较经济合理,对测量结果影响较大的物理量,应采用精确度较高的仪器,而对测量结果影响不大的物理量,就不必追求高精度仪器。

$$V = \frac{\pi}{4}D^2h$$
 $D = 0.8cm; h = 3.2cm;$ $\mathbb{E}_{X}: \frac{\Delta V}{V} \le 0.5\%$

$$\frac{\Delta V}{V} = \frac{2\Delta D}{D} + \frac{\Delta h}{h}$$

$$\frac{\Delta h}{h} \le 0.25\%$$

 $\Delta D \le 0.001cm$

 $\Delta h \le 0.008cm$

游标卡尺: 125mm/0.02mm/+-0.02mm

300mm/0.02mm/+-0.05mm

螺旋测微器:25mm/0.01mm/+-0.004mm

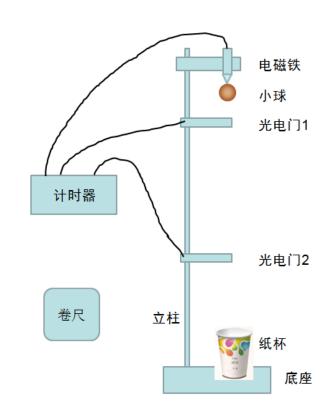
高h用游标卡尺测量 直径D用螺旋测微器测量 下周先上1小时绪论课,再回各自实验室完成以下两个实验:

从教学平台下载《绪论课实验讲义》: 1、"**自由落体测重力加速度**"实验,按前述要 求写一份预习报告

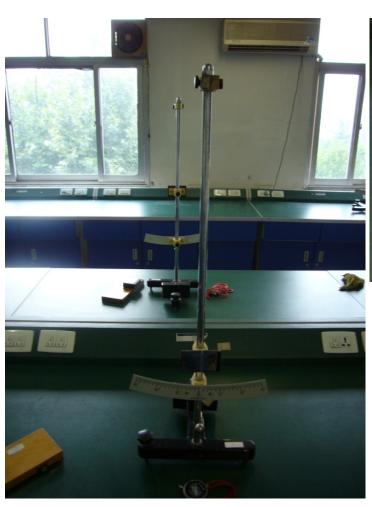
2、"**单摆的设计和研究**"实验,请参考《大学物理实验》第一册第40页例5写一份设计报告当作预习报告

自由落体测重力加速度

- **从起点开始下落距离不易测准** 下落的起始和终止位置不明确
- **从起点开始下落时间不易测准** 由于电磁铁有剩磁,因此小球下落 的初始时间不准确



单摆的设计与制作



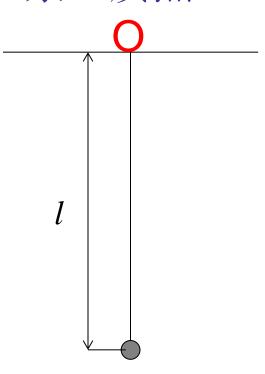
单摆实验原理

忽略:空气阻力、浮力、线的伸长

近似: 小摆角作简谐振动

$$T = 2\pi \sqrt{\frac{l}{g}} \qquad (\frac{\Delta g}{g} < 1.0\%)$$

无质量细线 系一质点



在设计报告上给出

- 摆长用什么仪器测量?摆球直径需要用游标卡尺测量吗?
- 至少需要测几个周期?

下周先上1小时绪论课,再回各自实验室完成以下两个实验:

从教学平台下载《绪论课实验讲义》:

- 1、"自由落体测重力加速度"实验,按前述要求写一份预习报告
- 2、"**单摆的设计和研究**"实验,请参考《大学物理实验》第一册第40页例5写一份设计报告当作预习报告

预习报告在实验前提交; 没有预习报告不能作实验!

谢谢!

基础物理实验绪论数据处理

物理实验教学中心

2018年3月

有效数字

测量结果中可靠的几位数加上不确定的一位数

测量只写到开始有误差的那一位,该位数后:四舍六入五凑偶

有效数字的位数与小数点无关: 1.23 同123

0.0123, 0.01230, 1.35 和1.3500

物理量的有效数字

• 直接测量: 仪器的最小分度+1位估读位

- 间接测量: 与运算方式有关
 - 加减运算:最大不确定度分量决定: 432.3+0.1263-2=430
 - 乘除运算: 最少有效数字分量决定: 48X3.2345/1.73²=52 48X3.2345/0.173²=5.2x10³

• 常数(如π等)多保留1位

• 中间计算结果的有效数字: 可多保留1位

不确定度的有效数字

• 通常保留1位

• 当第一位是1,2时,可保留2位

最终结果的有效数字

• 物理量的有效数字与不确定度对齐

例:测量圆柱体合金的密度,求标准不确定度

已知: m=14.00 g 允差0.04g

直径D用千分尺,高H用游标卡尺

D/mm	10.502	10.488	10.516	10.480	10.495	10.470
H/mm	20.00	20.02	19.98	20.00	20.00	20.02

不同分布测量仪器的置信概率P与置信因子Kp

Kp P	0.500	0.577	0.650	0.683	0.900	0.950	0.955	0.990	0.997
正态分布	0.675			1.000	1.650	1.960	2.000	2.580	3.000
均匀分布	0.877	1.000		1.183	1.559	1.645	1.654	1.715	1.727
三角分布	0.717	0.862	1.000	1.064	1.675	1.901	1.929	2.204	2.315

几种常见仪器的误差分布与置信系数

仪器	米尺	游标卡尺	千分尺	物理天平	秒表
误差分布	正态	均匀	正态	正态	正态
置信系数C	3	√3	3	3	3

D/mm	10.502	10.488	10.516	10.480	10.495	10.470
H/mm	20.00	20.02	19.98	20.00	20.00	20.02

$$\bar{D} = 10.4918$$
 mm

中间结果可多保留一位

$$u_{AD} = 0.007$$
 mm

$$u_{BD} = \frac{\Delta_D}{3} = \frac{0.004}{3} = 0.0013 \qquad mm$$

$$u_D = \sqrt{(1.11u_{AD})^2 + u_{BD}^2}$$
$$= \sqrt{(1.11 \times 0.007)^2 + 0.0013^2}$$
$$= 0.008 \quad mm$$

$$D = \overline{D} \pm u_D = (10.492 \pm 0.008)$$
 mm $(P = 68.3\%)$

$$u_{AH} = 0.006$$
 mm

 $\bar{H} = 20.003$ mm

$$u_{BH} = \frac{0.02}{\sqrt{3}} = 0.0115 = 0.012 \qquad mm$$

$$u_{H} = \sqrt{(1.11u_{AH})^{2} + (1.183u_{BH})^{2}}$$
$$= \sqrt{(1.11 \times 0.006)^{2} + (1.183 \times 0.012)^{2}}$$
$$= 0.016 \qquad mm$$

$$H = \overline{H} \pm u_H = (20.003 \pm 0.016)$$
 mm $(P = 68.3\%)$

$$u_{Bm} = \frac{0.04}{3} \approx 0.013$$

$$u_{m} = \sqrt{u_{Am}^{2} + u_{Bm}^{2}}$$

$$= \frac{0.04}{3}$$

$$\approx 0.01$$

$$g$$

$$m = (14.00 \pm 0.01)$$
 g $(P = 0.68)$

$$\rho = \frac{4m}{\pi D^2 H} = \frac{4 \times 14.00}{\pi \times 10.492^2 \times 20.003} = 8.094 \times 10^3 \quad g / mm^3 = 8.094 \quad g / cm^3$$

$$\text{常数多取-位3.1416}$$

$$\frac{u_{\rho}}{\rho} = \sqrt{\left(\frac{u_{m}}{m}\right)^{2} + \left(\frac{2u_{D}}{\overline{D}}\right)^{2} + \left(\frac{u_{H}}{\overline{H}}\right)^{2}}$$

$$= \sqrt{\left(\frac{0.01}{14.00}\right)^{2} + \left(\frac{2 \times 0.08}{10.492}\right)^{2} + \left(\frac{0.016}{20.003}\right)^{2}}$$

$$= 0.0022$$

$$u_{\rho} = 8.094 \times 0.0022 \approx 0.02$$
 g/cm^3

$$\rho = (8.09 \pm 0.02)$$
 g/cm^3 $(P = 68.3\%)$

实验结果的表示

测量结果的有效数字的位数取决于测量结果的不确定度。

- 1、不确定度通常只取一位有效数字,首位数字小于3时,可 取2位有效数字
- 2、不确定度的取舍也采用四舍六入五凑偶
- 3、测量结果的有效位数要向不确定度看齐
- 4、实验结果一般用绝对不确定度表示,也可用相对不确定 度表示。

常用数据处理方法

- (1)列表法
- (2)作图法
- (3)最小二乘法

1、列表法

• 记录原始数据的最好方法

- 格式要求:
 - (1) 列表名称
 - (2) 测量量的名称、单位等信息
 - (3) 要正确反映测量数据的有效数字
 - (4) 用钢笔/圆珠笔,如实记录数据
 - (5) 表格力求简单明了,一目了然

测量圆柱体的直径D(千分尺)和高H(游标卡尺)

D/mm	10.502	10.488	10.516	10.480	10.495	10.470
H/mm	20.00	20.02	19.98	20.00	20.00	20.02

或者

测量圆柱体的直径D(千分尺)和高H(游标卡尺)

D/mm 10.502 10.488 10.516 10.480 10.495 10.470

H/mm 20.00 20.02 19.98 20.00 20.00 20.02

优点:

- (1)数据易于参考比较,便于检查数据的合理性、 发现问题,指导实验
- (2) 一个表可同时记录多个变量间的变化而不紊乱
- (3) 便于以后随时处理数据,分析问题

2、作图法

- 坐标纸直角、半对数、对数坐标纸等
- 应用软件 origin、matlab、mathematica

图的格式

- 坐标轴、方向,物理量名称和单位,分度。
- 图号和图的名称。
- 可靠数字在图中应可靠,估读位在图中应是估计的,即图纸中的一小格对应数值中可靠数字的最后一位。
- 适当选取x轴和y轴的比例和坐标的起点,使图线比较对称的充满整个图纸,不要缩在一边或一角。除特殊需要以外,坐标轴的起点一般不一定取为零值。

标明坐标轴:

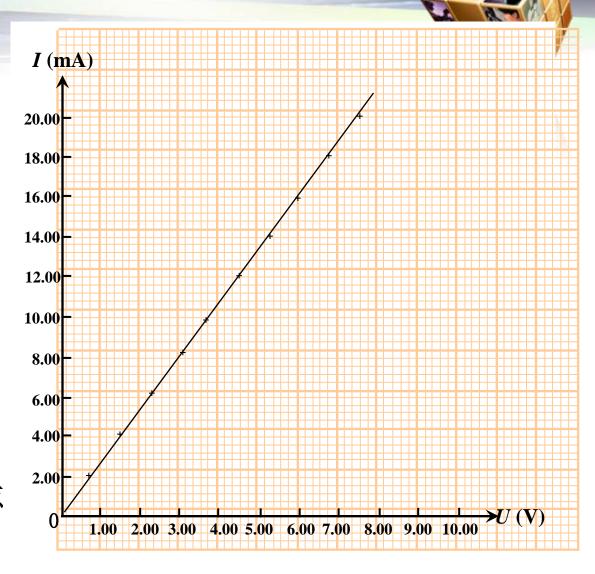
用粗实线画坐标轴 ,用箭头标轴方向,标 坐标轴的名称或符号、 单位,再按顺序标出坐 标轴整分格上的量值。

标实验点:

实验点可用" ⁺ "、" ○ "、" ○ "、等符号标出(同一坐标系下不同曲线用不同的符号)。

连线:

用直尺、曲线板等把点 连成直线、光滑曲线。一 般不强求直线或曲线通过



每个实验点,应使连线 两边的实验点与图线最为接近且分布大体均匀。

标出图线特征:

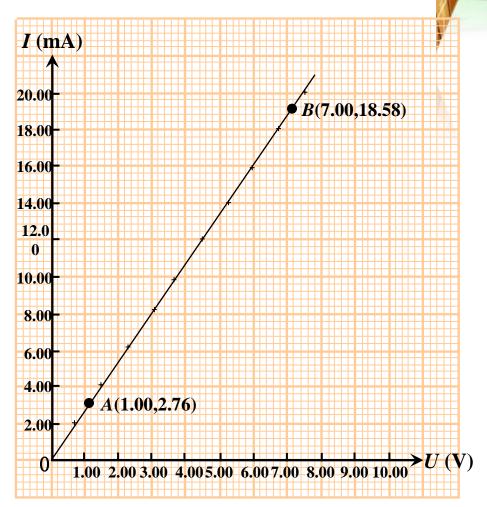
在图上空白位置标明实验条件或从图上得出的某些参数。如利用所绘直线可给出被测电阻*R*大小:从所绘直线上读取两点 *A*、*B*的坐标就可求出 *R* 值。

由图上A、B两点可得被测电阻R为:

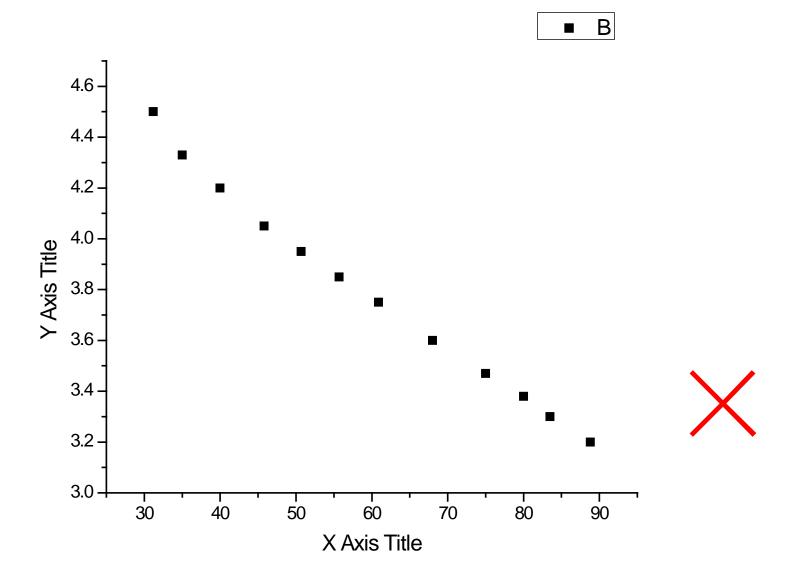
$$R = \frac{U_B - U_A}{I_B - I_A} = \frac{7.00 - 1.00}{18.58 - 2.76} = 0.379(k\Omega)$$

标出图名:

在图线下方或空白位 置写出图的名称及某些 必要的说明。



电阻伏安特性曲线



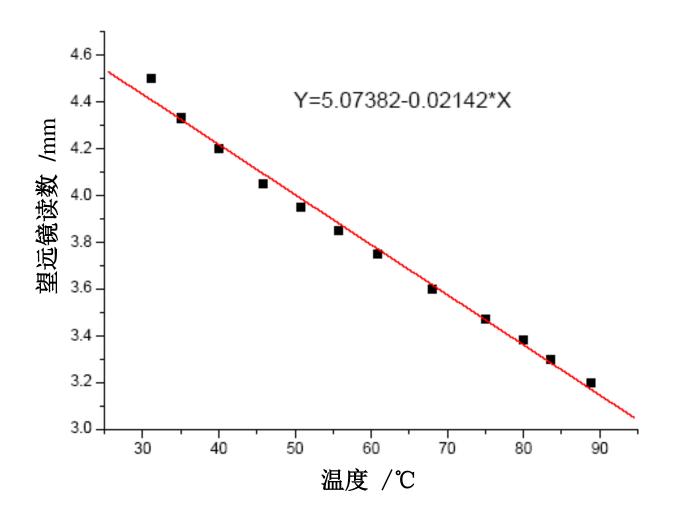
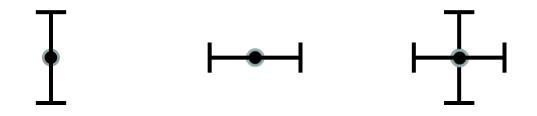


图1 光杠杆法测铜棒的长度与温度的关系

误差杆:不确定度的图示

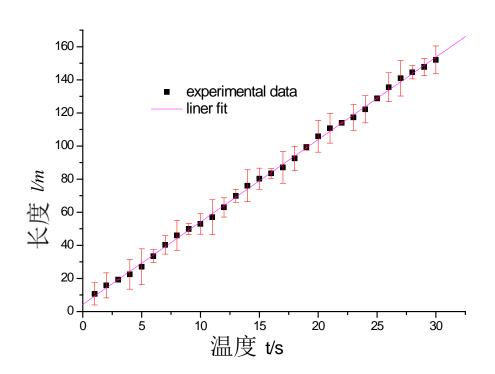
• 以数据点为基点,误差杆长度的一半表示相应不确定度的大小。



实验数据:

$$l = 4+5t+2\sin(t)$$
 拟合数据:

$$l = 4.35 + 4.98t$$



d∕µm	25	50	75	100	125	150	175
U/V	44.26	37.71	31.19	25.79	20.90	18.36	15.00
∆ <i>U</i> /V	1.9	1.6	1.3	1.1	0.9	8.0	0.6

$$U = U_0 e^{-ad}$$

U-d: 2∆U

In*U*-d: 2∆*U*/*U*

作图软件介绍: Origin

- 自己摸索
- 教学平台课件: Origin简易使用教程
- 图书馆有教程
- 图书馆的课件

在网络中心网站下载正版软件!

3、最小二乘法

用作图法把实验数据表示成曲线,固然可以看出事物之间的规律,但毕竟不如方程来得确切。如何从实验数据出发求出方程,这也是数据处理中常常遇到的问题。

方程的回归,首先要确定函数的形式

- 线性的函数关系,则可写成Y=aX+b;
- 指数函数关系,则可写成: $Y = ae^{bx} + c$
- 函数关系不明确,则常用多项式来表示:

$$Y = a_0 X + a_1 X^2 + \cdots$$

• 最小二乘法:

$$s = \sum_{i} (y_i - f(x_i))^2$$
 最小

$$\varepsilon = \sum_{i=1}^{k} [y_i - (b_1 x_i + b_0)]^2$$

$$b_1 = \frac{\overline{xy} - \overline{xy}}{x^2 - (\overline{x})^2}$$

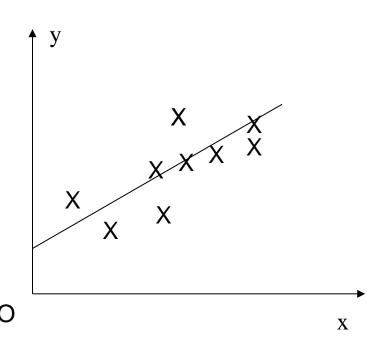
$$b_0 = \overline{y} - b_1 x$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

$$\overline{x^2} = \frac{1}{n} \sum_{i=1}^n x_i^2$$



相关系数r: 定量描述x、y变量之间线性相关程度的好坏。

$$r = \frac{\overline{xy} - \overline{xy}}{\left[\overline{x^2} - (\overline{x})^2\right] \left[\overline{y^2} - (\overline{y})^2\right]}$$
$$-1 \le r \le 1$$

r值在中0 < |r| < 1,r越接近于1,x, y 之间线性相关越好;r为正,称为正相关;r为负,称为负相关;r接近于0, x_i , y_i 为非线性。

相关系数阈值ro

附表二: 相关系数临界值表

$$P(|\rho| > \rho_{\alpha}) = \alpha$$
 (表中 $n-2$ 是自由度)

n-2	0. 10	0. 05	0. 02	0. 01	0.001	n-2
1	0.987 69	0.099 692	0.999 507	0.999 877	0.999 998 8	1
2	0.900 00	0.950 00	0.980 00	0.990 00	0. 999 00	2
3	0.805 4	0.878 3	0.934 33	0.958 73	0.991 16	3
4	0.729 3	0.811 4	0.882 2	0.917 20	0. 974 06	4
5	0.669 4	0.754 5	0.832 9	0.874 5	0.950 74	5
6	0.621 5	0.706 7	0.788 7	0.834 3	0. 924 93	6
7	0.582 2	0.666 4	0.749 8	0. 797 7	0.898 2	7
8	0.549 4	0.631 9	0.715 5	0.764 6	0.872 1	8
9	0. 521 4	0.602 1	0.685 1	0.734 8	0.847 1	9
10	0.497 3	0.576 0	0.658 1	0.707 9	0.823 3	10

r0是与测量次数n有关的量,一般可以通过查表得到。

r>r0:x,y之间是线性,可以用最小二乘法进行回归;

r<r0:x,y之间是非线性,不可以用最小二乘法进行回归。79

谢谢!