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and
1
pip = x [2aMrE+ (p? —2Mr)L, cosec?8]. (163)

It is now clear that the problem of solving the equations of geodesic motion
has been reduced to one of quadratures.
An alternative form of equation (161) which we shall find useful is

p*0? = [K —(L,—aE)*] — [a*(6, — E?)+ L2cosec?6] cos?6. (164)

(a) The separability of the Hamilton—Jacobi equation
and an alternative derivation of the basic equations

As we have stated, the existence of a fourth quantity that is conserved alonga
geodesic was first discovered by Carter by explicitly demonstrating the
separability of the Hamilton-Jacobi equation. At the time, it was wholly
unexpected; and it suggested that the other equations of mathematical physics
might be similarly separable. Indeed, they were all eventually separated as we
shall see in Chapters 8, 9, and 10. As the first of the chain of remarkable
properties that characterize Kerr geometry, it is useful to follow Carter’s
demonstration of the separability of the Hamilton-Jacobi equation.

The Hamilton-Jacobi equation governing geodesic motion in a space-time
with the metric tensor g is given by
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where S denotes Hamilton’s principal function. With g% for the Kerr geometry
given in Chapter 6, equation (135), equation (165) becomes
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It is convenient to rewrite this equation in the alternative form
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Assuming that the variables can be separated, we seek a solution of equation

(167) of the form
S=3%6t—Et+L,p+S,(r)+ Se(0), (168)
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where, as the notation indicates, S, and Sy are functions only of the variable
specified. For the chosen form of S, equation (167) becomes
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With the aid of the identity

(aEsin?0 — L,)*cosec? 0 = (L2 cosec? 0 —a*E?) cos?0 + (L, —aE)?,
(170)
we can rewrite equation (169) in the form

A ds, 2——l[(r2+a2)E~aL 1>+ (L, —aE)* +6,r?
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S 2
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The separability of the equation is now manifest and we infer that
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A(dr =X[(r +a’)E—al,]*—-[2+(L,~aE)*+0,r*] (172)

and

2
<%> =9 —(L2cosec’0—a*E?*+,a%)cos?0, (173)

where 2 is a separation constant. With the abbreviations

R=[(r*+a’E—~aL,]*~A[ 2+(L,—aE)*+6,r?] (174)
and
© = 2 —[a*(6, — E?) + L?cosec?0] cos?0, (175)

the solution for S is
r\/R(") o
S=30t—Et+ Lo+ | > —dr+| df JO0). (176)

The basic equations governing the motion can be deduced from the solution
(176) for the principal function S by the standard procedure of setting to zero
the partial derivatives of S with respect to the different constants of the
motion—2, d,, E, and L, in this instance. Thus, we find that
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leads to the equation
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Similarly, we find
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where simplifications have been effected with the aid of equation (178).

It can now be verified that equations (178)—(181) are entirely equivalent to
the set (160)—(163) with the identification

2 =K-—(L,—aE)% (182)

In particular, with this identification, the right-hand sides of equations (160)
and (164) agree with the present definitions of R and ® in equations (174) and
(175); and the relation (178) is an immediate consequence of equations (160)
and (164). Our basic equations, then, are

p*Ft =R; p*0? =0, (183)
1
prp = 3 [2aMrE + (p* —2Mr)L, cosec? 6],
and (184)
pt = —Z— (£2E —2aMrlL,),

where
R=E>*4(a*E*>~ LY~ 2)r*+2Mr[ 2+ (L, —aE)*]
—a22-5,r*A (185)
and
© = 2 + (a®’E? — L2cosec?0)cos?0 — 6, a*cos? 6. (186)
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It is convenient to assemble in one place the various formulae giving the
tensor and the tetrad components of the four momentum. We have

2 R
—p,=po’=‘/T, ~po = p*p° = /O,

2aMr sin? 6 20> Mr .
Py =%p‘—<r2+a2+ ap2 rsm29>(sm29)p“’= ~L,, > (187)
2Mr\ , 2aMrsin®6 0
D= 1——p2 D'+ e p?=E,
and
pY=py=e(E-wl;)=e*'p,
p(r) = = Dy = _—e“#zpr = +e+ﬂzp",
_ (188)
p(())__: ——p(e)z —e l‘apo:_—e'*'ﬂapo’
and

p(‘P) — __.p(‘p) — e‘l’p‘P = _..e—d’p‘p — e-‘l’Lz.

63. The null geodesics

In our considerations of the general non-planar orbits, we shall concentrate
on delineating the projection of the orbits on to the (r, 6) plane: the variations
of t and g along the orbits do not reveal any special features that have not
already been displayed by the planar orbits on the equatorial plane.

For the null geodesics 4, = 0,and it is convenient to minimize the number of
parameters by letting

¢=LJE and n=2/E (189)
and writing R and © in place of R/E? and ©/E?%:
R=r*+(a®>~E—nr2+2M[n+(&—a)*]r—a*n (190)
and
O =n+a®cos?— &2 cot? 6. (191)

The two parameters ¢ and 5 replace the single impact parameter, D, by which
we distinguished the null geodesics in the equatorial plane. The parameters &
and nare in fact related very simply to the ‘celestial coordinates’ « and f of the
image as seen by an observer at infinity who receives the light ray. Making use
of the expressions (188), we readily verify that

()
o= <r§(—n> = £ cosec 0,
and (192)
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