课程表
将视效果调整。学有余力可自学阅读材料。
日期(周) | 周一(复习、解惑) | 周三(传授) | 阅读材料 |
---|---|---|---|
2.21 & 3(一) | 惠勒第一原理和进化到相对论,课程大纲 | 陀螺仪方程MTW 6.5节和进动Hartle 14章 | MTW 2017序言、(Shibata 序言) |
2.28 & 3.2 (二) | 复习尝试、费移MTW 6.5 | Kerr时空Hartle 第15.2-3和15.5节(回顾史瓦西黑洞视界Hartle 9.4和12.1节、7.9和20.2节 | Doran 《geometric algebra》中的Grassmann代数起源、刘辽&赵峥《广义相对论》8.3.2节(注意度规约定惯性指数为1正3负) |
三 | 视界面ii、LNRF | LNRF、欧拉观者(本人教学论文)、讲义测地线HJ方法 | 1、Wilkins, D., 1972, Phys. Rev. D., 5, 814 Bound geodesics in the Kerr metric PDF 类时束缚轨道:必要条件、球轨道及其节点进动和周期(注意公式和计算都取了极端Kerr黑洞特例)2、Bardeen, James M.; Press, William H.; Teukolsky, Saul A., 1972, ApJ, 178, 347 Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation PDF 赤道面上、局部非转标架 (LNRF) |
四 | 克尔时空测地线势能曲线分析 | 热力学和流体运动学 | MTW 22章、Plebanski 15.1-2节 |
五 | Hartle 22.2节、热力学和流体动力学MTW 22.2-3章 | 理解和应用相对论性理想流体的欧拉方程 | MTW 22章 |
六 | 星体结构和稳定性MTW 23、26章、Hartle 24、温伯格第11章 | Hartle 24.5节、MTW 26章 | George King 《Vibrations and Waves》 第4章 |
七 | 数值相对论Stuart L. Shapiro and Thomas W. Baumgarte - Numerical Relativity_ Starting from Scratch (2021) 第2章 | 继续 | Kip S. Thorne and Roger D. Blandford, Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics |
八 | 3+1分解爱因斯坦方程、第二种3+1分解电动力学方程 | {Thorne}, K.~S. and {MacDonald}, D., Electrodynamics in Curved Spacetime - 3+1 Formulation | |
九 | 粘滞涡旋和磁流体 | 黑洞膜范式、加速系和Rindler坐标MTW第6章 | Black holes: The membrane paradigm |
十 | 引力波线性化理论Linearization of Einstein equations, Lorenz gauge,TT gauge[1.1, 1.2] | 引力波的测量原理Interaction of GWs with freely falling test particles, key ideas underlying GW detectors [1.3] | Maggiore_M _Gravitational waves vol.1 |
十一 | 放假 | 引力波的能量Effective EMT of GWs, GW energy and linear-momentum fluxes [1.4] | MTW 32、 |
十二 | 引力波的传播、几何光学近似Propagation of GWs in curved spacetime, geometric optics approximation, interaction with matter, gravitational lensing, absorption and scattering [1.5]、动理论MTW 22.6 | 场论初步Zee A. 《QFT in a nutshell》part 1 1-4. | Mukhanov Viatcheslav , Sergei Winitzki-Introduction to quantum effects in gravity 2004 , Goldstein, Classical Mechanics最后一章;Maggiore, Introduction to QFT |
十三 | Leading-order generation of GWs in the slow-motion approximation, quadrupole formula [3.1–3.3] | 例:闭合系统和两体系统产生的引力波特征Characteristics of GWs and power radiated from binary systems,习题3.1-2 | |
十四 | 双星内旋GWs from binary systems on inspiraling, circular orbits [4.1.1] and on eccentric orbits [4.1.2 & 4.1.3] | 后牛顿展开Basics of post-Newtonian theory 【5.1】 & Weinberg 9.1 | MTW第36章引力波角动量的时空几何方法、Einstein, Infeld & Hoffmann (1938) |
十五 | Basics of post-Minkowskian theory [5.3] | Effective-one-body theory [14.2] | |
十六 | *Effective-one-body theory* [14.2]、Tidal effects in compact objects【14.4】 | BH perturbation theory & quasi-normal modes【12】 |
Flanagan-Hinderer (2007) Binnington & Poisson (2009)(Alcubierre book (see Ch. 2-6) SlidesNR |
十七 | Numerical Relativity[14.3、14.4.2]、Stuart L. Shapiro and Thomas W. Baumgarte - Numerical Relativity_ Starting from Scratch (2021) 5、Analytical/numerical relativity templates for searches of GWs from compact-object binaries [7.2, 9.2.3] | Inferring properties/tests of GR with GW150914 & GW151226 [15] | GW150914-minimal-assumption-search GW150914-properties GW150914-tests-of-GR |
十八 | 引力塌缩和黑洞MTW 32、[10] | GWs from early Universe: phase transitions, cosmic/fundamental strings/phenomenological bounds【22】 |