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Abstract. A pair (X,ψ) is a line system if X ⊂ R is nonempty and bounded,
ψ : X → X is continuous, and ψ can be extended to an interval map. Two line

systems (X, ψ), (Y, ξ) have the same pattern if there exists an order preserving
bijection h : X → Y such that h ◦ ψ = ξ ◦ h. Say (X,ψ) forces (Y, ξ) if every
interval map having an invariant set with the pattern of (X,ψ) also has an
invariant set with the pattern of (Y, ξ). Let J ⊂ I be compact intervals.
g ∈ C0(J) is called a reduction of f ∈ C0(I) if each point x ∈ ∆(f, g) ≡ {x ∈
J : g(x) 6= f(x)} is wandering under g and g is constant on every connected
component of ∆(f, g). In this paper we show that for any f ∈ C0(I) and any
nonempty invariant set S of f there exists a reduction g ∈ C0(J) of f with
J = [inf S, supS] such that g|S = f |S and g is monotonic on every connected
component of J − S. By means of reductions of maps, we obtain several
general results about the forcing relation between the patterns of invariant sets
of interval maps, and extend known results about forcing relations between
patterns of periodic orbits, also obtaining sufficient conditions for a general
pattern to force a given minimal pattern. Moreover, as applications of the
idea of reductions of interval maps and forcing relations on patterns, we give a
new and simple proof of the converse of Sharkovskĭı theorem and study fissions
of periodic orbits, entropies of patterns etc.
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1. Introduction

1.1. Background and preliminaries. In this paper we study the forcing relation
on patterns of line systems and reductions of interval maps. An interval map is
a continuous map from an interval to itself. A line system is a pair (X,ψ), where
X is a nonempty bounded subset of R, ψ is a continuous map from X to X , and ψ
can be extended to an interval map, that is, there exists an interval map f : I → I
such that X ⊂ I and f |X = ψ. For any interval map g : J → J and any nonempty
invariant set Y of g (i.e. g(Y ) ⊂ Y ), the pair (Y, g|Y ) is called a subsystem of
g. Hence, a pair (X,ψ) is a line system if and only if it is a subsystem of some
interval map, and a line system can be regarded as a nonempty invariant set of
some interval map. Partitioning all line systems by an “order-preserving” relation
(the definition will be given below), we obtain various equivalence classes, which
are called patterns of these line systems.

Every interval map has infinitely many subsystems. So there is a natural ques-
tion: if one has known that an interval map has some subsystem, then what can
one say about other subsystems of this map? If one confines his attention to peri-
odic systems, then there are rich results on this question. They are included in the
theory of forcing relation on patterns of periodic orbits [1, 5, 9, 24].

One uses R (N and Z respectively) to denote the set of the real numbers (the
natural numbers and integers respectively), and denote Zn = {1, 2, . . . , n} for each
n ∈ N. Let P = {p1, p2, . . . , pn} ⊂ R and ψ : P → P . Then (P, ψ) is a periodic

orbit (or a cycle) if ψ ia a cyclic permutation of P . Two periodic orbits (P, ψ),
(Q, ξ) are equivalent if there exits an order preserving bijection h : P → Q such
that h ◦ ψ = ξ ◦ h, or hψ = ξh for short. An equivalence class of this relation
will be called a pattern. If A is a pattern and (P, ψ) ∈ A, then one says that the
cycle (P, ψ) has a pattern A (or P is a representative of A) and uses the symbol
[(P, ψ)] to denote the pattern A.

There is another equivalent way to define the pattern of periodic orbits. Let
(P, ψ) be a periodic orbit and P = {p1 < p2 < . . . < pn}. Then the pattern of
(P, ψ) is defined to be a cyclic permutation θ of Zn which satisfies ψ(pi) = pθ(i) for
i = 1, 2, . . . , n. It is easy to see that these two definitions are equivalent.

A map f : I → I has a cycle (P, ψ) if f |P = ψ. One shall say that f exhibits the
pattern [(P, ψ)]. A map f is called a monotonic extension of P if it is monotone
between consecutive element of P and constant to left of the leftmost and to the
right of the rightmost of P . Now one can define forcing relation between patterns:
A pattern A forces a pattern B if each interval map exhibiting A exhibits also B.

One of important results is that the forcing relation on periodic patterns is a
partial order relation [1, 2]. There is also a convenient way to decide the forcing
relation on two patterns: let (P, ψ) be a cycle and B a pattern, then [(P, ψ)] forces
B if and only if there is a monotonic extension of (P, ψ) which exhibits pattern B
[1, 24].

In the theory of discrete dynamical systems, periodic orbits play a very impor-
tant role. The notion of pattern and forcing relation is the key to the problem of
coexistence of various types of cycles for a given map. If we know which patterns
are forced by a given pattern A, we have enormous information about the structure
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of an interval map with cycle of pattern A. Unfortunately, the forcing relation
is rather complicated. Therefore it makes sense to consider notations weaker than
pattern. This limits the information we get, but makes it easier to obtain it. One of
such notions is period. The Sharkovskĭı Theorem gives the forcing relation among
periods. This is a linear ordering, so the characterization of all the periods forced
by the given one is simple. Now we state the Sharkovskĭı Theorem briefly.

Let I = [a, b] be a compact interval and C0(I) be the set of all continuous
maps from I to itself. For any f ∈ C0(I) and x ∈ I, denote O(x) = O(x, f) =
{x, f(x), f2(x), . . .} and On(x) = On(x, f) = {x, f(x), . . . , fn(x)}. O(x, f) is called
an orbit of f . A point x ∈ I is called a periodic point of f with period n if
fn(x) = x and fk(x) 6= x for 1 ≤ k < n. Denote by Pn(f) the set of all periodic
points of f with period n and let P (f) =

⋃∞
n=1 Pn(f). Write

(1.1) Fn(I) ≡ F (I, n) = {f ∈ C0(I) : Pn(f) 6= ∅}

For any m,n ∈ N, say that m forces n and write m⊳n if Fm(I) ⊂ Fn(I). In 1964,
Sharkovskĭı discovered the following striking theorem.

Theorem 1.1. 3⊳5⊳7⊳ . . .⊳6⊳10⊳14⊳ . . .⊳12⊳20⊳28⊳ . . . . . .⊳8⊳4⊳2⊳1.

The original proof of Theorem 1.1 was given in [25]. Besides this proof, some
authors also gave variant proofs, see [11, 16, 20, 22, 26] etc. In most of these proofs,
the idea of Straffin [27] concerning directed graphs was adopted.

As a supplement of Theorem 1.1, Sharkovskĭı [25] also proved the following
theorem, which is called the converse of Sharkovskĭı’s theorem by Elaydi [19].

Theorem 1.2. For any m,n ∈ N with m 6= n, if m ⊳ n then Fn(I) − Fm(I) 6= ∅.
Moreover, let F (I, 2∞) =

⋂∞
k=0 F (I, 2k), Φ(I, 2∞) =

⋃

{Fn(I) : n ∈ N − {2k−1 :
k ∈ N}}. Then F (I, 2∞)− Φ(I, 2∞) 6= ∅.

Unfortunately, the classification of cycles by period only is very coarse. Knowing
only periods of cycles is much less than knowing their patterns. Later some other
possible choices were discovered ([5, 6, 15]). It gives better classification than just
by period, and on the other hand, it admits a full description of possible sets of
types. For example, one defines the rotation pair of a cycle as (p, q), where q is the
period of the cycle and p is the number of its elements which are mapped to the
left of themselves. The number p/q ia called the rotation number of the cycle. Let
f : I → I be an interval map and let P be a cycle of f of period q > 1. Let m be the
number of points x ∈ P such that f(x) − x and f2(x) − f(x) have different signs.
Then the pair (m/2, q) is called the over-rotation pair of the cycle. For rotation
and over-rotation pairs the equivalence classes are not as large as for period. The
difference is that whereas for the rotation pairs forcing is only a partial ordering,
for the over-rotation pairs it is a linear one. So using over-rotation pairs one gets a
situation that is basically not more complicated than the situation for period, but
one digs much deeper into the structure of cycles. We do not plan to discuss these
too much in this paper, and please refer to [5, 6, 15] for more details.

In this paper, though we will discuss periodic patterns frequently, our main
purpose is to study the forcing relation under more general situations. In [13] the
author generalized the forcing relation to minimal piecewise monotone patterns. Let
M be the set of pairs (X, g) such that X ⊂ R is compact, g : X → X is continuous,
g is minimal on X and has a piecewise monotonic extension to the convex hull of
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X . Two pairs (X, g), (Y, f) from M are equivalent if the map h : O(minX, g) →
O(minY, f), defined by h(gm(minX)) = fm(min Y ) for each m ≥ 0, is increasing
on O(minX, g). An equivalence class of this relation is defined to be a minimal
pattern. In [13] the author showed that the forcing relation on minimal piecewise
monotone patterns is a partial ordering.

1.2. Main results of the paper. In this paper we study forcing relation on pat-
terns of invariant sets of interval maps, and our viewpoint is different from [13]
(also we do not assume that the maps considered are piecewise monotone).

Let Ψ be the set of all line systems (X,ψ). Let (X,ψ), (Y, ξ) ∈ Ψ. Say that
(X,ψ) and (Y, ξ) have the same pattern (denoted by (X,ψ) ≈ (Y, ξ)) if there
exists an order-preserving bijection h : X → Y such that hψ = ξh. Denote by Ψ∗

the set of equivalence classes in Ψ under the equivalence relation ≈, i.e. Ψ∗ = Ψ/ ≈.
Then Ψ∗ can be regarded as the set of patterns of invariant sets of interval maps.
Unlike patterns of periodic orbit and minimal sets, the forcing relation on Ψ∗ is not
a partial ordering any more (see Example 4.5, 4.7).

Let A,B ∈ Ψ∗ be two patterns. Say A forces B if every interval map having
an invariant set with the pattern A also has an invariant set with the pattern B.
Our aim is to give some conditions under which A can force B. For this purpose,
we develop a tool named the reduction of continuous maps. Let J, I be compact
intervals with J ⊂ I, f ∈ C0(I) and g ∈ C0(J). Write ∆(f, g) = {x ∈ J : g(x) 6=
f(x)}. g is called a reduction of f if each point x ∈ ∆(f, g) is wandering under g
and g is constant on every connected component of ∆(f, g). About the reduction
we have the following result:

Theorem 2.8 For any f ∈ C0(I) and any nonempty compact invariant set S of f
there exists a reduction g ∈ C0(J) of f with J = [inf S, supS] such that g|S = f |S
and g is monotonic on every connected component of J − S .

By means of reductions of maps, we obtain several general results about the
forcing relation between the patterns of invariant sets on intervals. For example,
we give a characterization of the forcing relation between patterns in the absence
of companionate orbits (see Definition 4.13). We have the following result:

Theorem 4.14 Let X ⊂ R be compact and (X,ψ), (Z, ξ) ∈ Ψ. Suppose ξ has
no companionate orbits. Then [(X,ψ)] forces [(Z, ξ)] if and only if there exists a
monotonic extension of (X,ψ) which exhibits ξ.

And for some special patterns, we can weaken the conditions. For example, for
the case of periodic patterns, we have

Theorem 5.2 Suppose X ⊂ R is compact, (X,ψ) ∈ Ψ. Then [(X,ψ)] forces a
periodic pattern [(P, θ)] if and only if there exists a monotonic extension of ψ which
has a periodic orbit of pattern θ.

As for non-periodic minimal patterns, we have a sufficient condition for a general
pattern to force a given minimal pattern:

Theorem 5.8 Let (W,ϕ) be a compact line system, and (X,ψ) be a minimal line
system but not periodic. If there exists a monotonic extension f of (W,ϕ) exhibiting
(X,ψ), then each interval map exhibiting (W,ϕ) has a minimal subset which is
equivalent to (X,ψ) in sense of Bobok.
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As applications of the idea of reductions of interval maps, we study periodic
patterns and give a new approach to Theorem 1.2. Also we apply the results
on forcing relation we built to study fissions of periodic orbits and the entropy of
patterns etc. For example, we define h∗(X,ψ) = inf{h(I, f) : f ∈ C0(I) and f |X =
ψ}, where X is compact and I = [inf X, supX ]. We show that if (X,ψ) ≈ (Y, ξ)
with X,Y compact, then h∗(X,ψ) = h∗(Y, ξ) (Corollary 7.4). Hence we can define
the topological entropy of a pattern.

1.3. Organization of the paper. The paper is organized as follows: In Section
2 we introduce the definition of reductions of interval maps and give some basic
properties and results. In particular, we will prove Theorem 2.8. In Section 3 as
applications of the tool developed in Section 2 we give some results on patterns of
periodic orbits. Especially, we give a new and simple proof of Theorem 1.2. Section
4 and 5 are the bulk of the paper, where we study the forcing relation on invariant
sets carefully. In Section 4 we give some general conditions under which one pattern
can force another one and in Section 5 we discuss the periodic and non-periodic
minimal patterns. In Section 6 we use the results developed in Section 4 to study
the fissions of periodic orbits etc. Finally, we study the entropy of patterns in the
last section.

2. Reductions of interval maps

In this section we introduce the concept of reductions of interval maps, and
show that for any f ∈ C0(I) and any nonempty invariant set S of f , there exists a
reduction of f preserving S.

2.1. Notation. For any {r, s} ⊂ R with r < s, write [r; s] = [s; r] = [r, s], and
[r; r] = {r}. For any {a, b} ⊂ R, write (a; b] = [b; a) = [a; b] − {a}, and (a; b) =
(b; a) = (a; b] − {b}. For any nonempty bounded set X ⊂ R, let L[X ] denote the
closed convex hull of X in R, i.e.

L[X ] = [ infX, supX ],
and let

l(X) = supX − inf X.

The interior, closure and boundary of X in R are denoted by
◦

X, X and ∂X respec-
tively.

Let X be a topological space and f : X → X be a continuous map. A point
x ∈ X is called a recurrent point of f if for any neighborhood U of x and any
m ∈ N there exists n > m such that fn(x) ∈ U . A point x ∈ X is nonwandering if
for every neighborhood U of x, fn(U)∩U 6= ∅ for some n ∈ N. Denote respectively
by R(f) and Ω(f) the set of all recurrent and nonwandering points of f . It is clear
that both R(f) and Ω(f) are invariant sets of f .

2.2. Reductions of interval maps. Let I = [a, b] and f ∈ C0(I). A closed
interval J ⊂ I is called a level interval of f if f |J is constant.

Definition 2.1. Let I, J be compact intervals with J ⊂ I and f ∈ C0(I), g ∈
C0(J). Set

(2.1) ∆(f, g) = {y ∈ J : g(y) 6= f(y)}.

g is called a reduction of f if the following conditions are satisfied:
(a) ∆(f, g) ∩ Ω(g) = ∅;
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(b) g is constant on every connected component of ∆(f, g).

It is easy to see that ∆(f, g) is an open set relative to the topology of J . And if
∆(f, g) ∩ ∂J = ∅, then every connected component of ∆(f, g) is an open interval.
Note that in Definition 2.1 we do not insist J 6= I or g 6= f . Thus f itself is also a
reduction of f .

We now exhibit some basic properties on reductions of interval maps.

Lemma 2.2. Let J ⊂ I be intervals and g ∈ C0(J) be a reduction of f ∈ C0(I).
Then

(i) g|Ω(g) = f |Ω(g);
(ii) R(g) ⊂ R(f), and Pn(g) ⊂ Pn(f) for all n ∈ N.
(iii) For any interval K ⊂ J , if f |K is increasing (decreasing, constant respec-

tively), then g|K is increasing (decreasing, constant respectively);
(iv) l(g(K)) ≤ l(f(K)), for any interval K ⊂ J ;
(v) Ω(g) ⊂ Ω(f).

Proof. It is easy to verify (i)-(iv) by the definition. Now we show (v). Consider
any x ∈ Ω(g). For any ε-neighborhood U of x in J , there exist w ∈ U and m ∈ N

such that gm(w) ∈ U . If {w, g(w), . . . , gm−1(w)} ∩ ∆(f, g) 6= ∅, then there exists
an n ∈ {0, 1, . . . ,m − 1} such that gn(w) ∈ ∆(f, g) and gj(w) /∈ ∆(f, g) for all
j ∈ {n+ 1, . . . ,m− 1}. Let Kn be the connected component of ∆(f, g) containing
gn(w). Then g|Kn

is constant. By (a) of Definition 2.1, gn(x) /∈ Kn. Hence

there is a un ∈ [x;w) such that gn(un) ∈ Kn − Kn ⊂ J − ∆(f, g), gj(un) =
gj−n(gn(un)) = gj−n(gn(w)) = gj(w) /∈ ∆(f, g) for j ∈ {n + 1, . . . ,m − 1}, and
gm(un) = gm(w) ∈ U . If it still holds that {un, g(un), . . . , g

n−1(un)} ∩∆(f, g) 6=
∅, then one can also find a k ∈ {0, 1, . . . , n − 1} and a uk ∈ [x;un) such that
{gj(uk) : j = k, k + 1, . . . ,m − 1} ∩∆(f, g) = ∅ and gm(uk) = gm(w) ∈ U . Thus
there must exist a u = u0 ∈ [x;w] such that {u, g(u), . . . , gm−1(u)} ∩∆(f, g) = ∅
and gm(u) = gm(w) ∈ U . By (2.1), one has fm(u) = gm(u) ∈ U . This implies
x ∈ Ω(f), and hence Ω(g) ⊂ Ω(f). �

Lemma 2.3. Let g be a reduction of f , and h be a reduction of g. Then h is a
reduction of f .

Proof. Note that ∆(f, h) ⊂ ∆(f, g)∪∆(g, h). By Definition 2.1-(a) and Lemma 2.2-
(v), ∆(f, h)∩Ω(h) ⊂ (∆(f, g)∪∆(g, h))∩Ω(h) ⊂ (∆(f, g)∩Ω(g))∪(∆(g, h)∩Ω(h)) =
∅. by Definition 2.1-(b) and Lemma 2.2-(iii), h is constant on every connected
component of ∆(g, h) and of ∆(f, g). Thus h is a reduction of f . �

Proposition 2.4. Let I0 ⊃ I1 ⊃ I2 ⊃ . . . and J =
⋂∞
n=0 In be compact intervals

and fn+1 ∈ C0(In+1) be a reduction of fn ∈ C0(In) for n = 0, 1, 2, · · · . Then
f0|J , f1|J , f2|J , . . . converges uniformly to a map g ∈ C0(J), which is also a reduc-
tion of f0.

Proof. By Lemma 2.3, each fn is a reduction of f0. Suppose J = [c, d]. Let
P1 =

⋂∞
n=0 P1(fn). For n ≥ 0, P1(fn) is a nonempty closed set. By Lemma 2.2-(ii),

P1(fn+1) ⊂ P1(fn). Thus P1 is nonempty. By Lemma 2.2-(i), f0|P1 = f1|P1 =
f2|P1 = . . .. Take a point e ∈ P1. For any x ∈ [c, e] (resp. x ∈ [e, d]), let Yx,n be the
connected component of f−1

n (fn(x))∩ [c, e] (resp. f−1
n (fn(x))∩ [e, d]) containing x,

and let yx,n = maxYx,n (resp. yx,n = min Yx,n). It follows from (b) of Definition
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2.1 that yx,n 6∈ ∆(f0, fn). Hence fn(x) = fn(yx,n) = f0(yx,n). By Lemma 2.2-
(iii), Yx,0 ⊂ Yx,1 ⊂ Yx,2 ⊂ . . .. Thus yx,0, yx,1, yx,2, . . . is a monotonic sequence.
Let yx = limn→∞ yx,n. Then limn→∞ fn(x) = limn→∞ f0(yx,n) = f0(yx). Define
g : J → J by

g(x) = f0(yx), for any x ∈ J.

Then f0|J , f1|J , f2|J , . . . converges pointwisely to g. For any closed interval K ⊂ J ,
it follows from Lemma 2.2-(iv) that

l(f0(K)) ≥ l(f1(K)) ≥ l(f2(K)) ≥ . . . .

Thus {fn|J : n = 0, 1, 2, . . .} is an equicontinuous family of maps, and hence f0|J ,
f1|J , f2|J , . . . converges uniformly to g. This implies that g is continuous.

For any x ∈ ∆(f0, g), there exists an m ≥ 1 such that x ∈ ∆(f0, fm). By
Definition 2.1, there is an open ε-neighborhood Ux of x in J such that fm(Ux) =
{fm(x)} and Ux ∩ Ω(fm) = ∅. For all n ≥ m, by (iii) and (v) of Lemma 2.2 one
gets fn(Ux) = {fn(x)} and Ux ∩ Ω(fn) = ∅, which imply that g(Ux) = {g(x)} and
O(fn(x), fn) ∩ Ux = ∅. Since fn converges uniformly to g as n → ∞, one has
O(g(x), g) ∩Ux = ∅, which imply x /∈ Ω(g). Thus g satisfies the conditions (a) and
(b) in Definition 2.1 for f = f0, and hence g is a reduction of f0. This completes
the proof of Proposition 2.4. �

2.3. Normal reduction of f preserving S. Now we are going to show that for
any f ∈ C0(I) and invariant set S of f , there exists a reduction of f preserving S.
Actually we can say more.

Definition 2.5. Let f ∈ C0(I), and S be a nonempty invariant set of f . A map
g ∈ C0(L(S)) is called a normal reduction of f preserving S if g is a reduction
of f , g|S = f |S , and g is monotonic on every connected component of L(S)− S.

Remark 2.6. Note that, for any g ∈ C0(L(S)) and any x ∈ L(S), g|{x} is monotonic.
Thus, g is monotonic on every connected component of L(S) − S if and only if g
is monotonic on every connected component of L(S)− S, and hence, g is a normal
reduction of f preserving S if and only if g is a normal reduction of f preserving S.

Example 2.7. Let f : [0, 1] → [0, 1] be a piecewise linear map whose graph is in
Figure 1. It is clear that S = {0, 1/2, 1} is an invariant set of f . Then as in Figure
1 g is a normal reduction of f preserving S.

0 1/21/4 1

1/2

1

0 1/21/4 1

1/2

1

f g

Figure 1

The main result of this part is the following:
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Theorem 2.8. Let f ∈ C0(I) and S be a nonempty invariant set of f . Then there
exists a normal reduction of f preserving S.

To prove Theorem 2.8, one need some preparations.

Definition 2.9. Let I = [a, b], f ∈ C0(I) and S be a nonempty invariant set
of f . An interval J = [v, y] is called a pseudo-levelable interval of (S, f) if

J ⊂ L(S),
◦

J ∩S = ∅, f(v) = f(y) and l(f(J)) > 0. A pseudo-levelable interval

J = [v, y] of (S, f) is said to be levelable if O(v)∩
◦

J= ∅.

Write

(2.2) λ(S, f) = sup({0} ∪ {l(f(J)) : J is a levelable interval of (S, f)}),

(2.3) µ(S, f) = sup({0} ∪ {l(f(J)) : J is a pseudo-levelable interval of (S, f)}).

A levelable interval J of (S, f) is said to be maximal if l(f(J)) = λ(S, f) and
l(J) = max{l(K) : K is a levelable interval of (S, f) with l(f(K)) = λ(S, f)}.
Similarly, one can define maximal pseudo-levelable intervals of (S, f).

Obviously, if λ(S, f) > 0 (resp. µ(S, f) > 0), then there exists a maximal
levelable (resp. maximal pseudo-levelable) interval of (S, f).

Remark 2.10. From Definition 2.9 we see that, for any f ∈ C0(I) and any nonempty
invariant set S of f , an interval J ⊂ L(S) is a levelable ( resp. pseudo-levelable )
interval of (S, f) if and only if J is a levelable ( resp. pseudo-levelable ) interval of
(S, f). Hence, we have λ(S, f) = λ(S, f) and µ(S, f) = µ(S, f) .

One can get the following two lemmas readily.

Lemma 2.11. Let S be a nonempty invariant set of f ∈ C0(I). Then µ(S, f) = 0
if and only if f is monotonic on every connected component of L(S)− S.

Lemma 2.12. Let S be a nonempty invariant set of f ∈ C0(I), and J = [v, y] be
a levelable interval of (S, f). Define ϕ : I → I by

ϕ(x) =

{

f(x), if x ∈ I − J ;
f(v), if x ∈ J.

Then ϕ is a reduction of f , and
◦

J ∩ Ω(ϕ) = ∅ . (See Figure 2)

v y
J I

ϕ

f

Figure 2

Definition 2.13. The map ϕ : I → I defined in Lemma 2.12 is called a basic

reduction of f by leveling J .
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Lemma 2.14. Let J ⊂ I be compact intervals, f ∈ C0(I) and g ∈ C0(J). Suppose
S is a nonempty invariant set of g and g|S = f |S. If g is a reduction of f , then
µ(S, g) ≤ µ(S, f).

Proof. Assume K = [v, y] is a pseudo-levelable interval of (S, g). Then g(v) =
g(y). Let Kv (resp. Ky) be the connected component of g−1(g(v)) containing v
(resp. y). Suppose maxKv = v1, minKy = y1. Then by Definition 2.1-(b), one
has f(v1) = g(v1) = g(v) = g(y) = g(y1) = f(y1), and by Lemma 2.2-(iv) one
has l(g([v, y])) = l(g([v1, y1])) ≤ l(f([v1, y1])). Thus [v1, y1] is a pseudo-levelable
interval of (S, f), and from (2.3) it follows that µ(S, g) ≤ µ(S, f). �

Lemma 2.15. Let S be a nonempty invariant set of f ∈ C0(I). Then

µ(S, f) ≥ λ(S, f) ≥ µ(S, f)/4.

Proof. It is clear that µ(S, f) ≥ λ(S, f). It is left to show that λ(S, f) ≥ µ(S, f)/4.
Since µ(S, f) = 0 implies λ(S, f) = 0, one may assume that µ(S, f) > 0. Let
J = [v; y] be a pseudo-levelable interval of (S, f) satisfying l(f(J)) = µ(S, f).
Take u and u1 ∈ J such that f(u) = max f(J) and f(u1) = min f(J). Then
f(u)− f(u1) = l(f(J)). By symmetry, one may assume f(u) − f(y) ≥ l(f(J))/2.

Let (z; z1) be the connected component of L(S)−S containing
◦

J . One may assume
f(z1) ≥ f(z) and v ∈ [z; y).

If f(u) ≥ f(z1), then there exists w ∈ [z;u] such that f(w) = f(z1). Since [w; z1]
is a levelable interval of (S, f), λ(S, f) ≥ l(f([w; z1])) ≥ f(u)− f(y) ≥ l(f(J))/2 =
µ(S, f)/2.

If f(y) ≤ f(z), then there exists z2 ∈ [y; z1] such that f(z2) = f(z). Since [z; z2]
is a levelable interval of (S, f), λ(S, f) ≥ l(f([z; z2])) ≥ l(f(J)) = µ(S, f).

If f(u1) ≤ f(z) < f(y) and u1 ∈ (u; y), then there exists z3 ∈ [u1; y) such that
f(z3) = f(z) and one also has λ(S, f) ≥ l(f([z; z3])) ≥ f(u)− f(u1) = µ(S, f).

In the following we assume

f(z) < f(v) = f(y) < f(u) < f(z1)

and

u1 ∈ [v;u) or u1 ∈ (u; y] and f(u1) > f(z).

Then there exist w1 ∈ (y; z1), y1 ∈ (u;w1) and v1 ∈ (z;u) such that

f(w1) = f(u), f(y1) = f(v1) = min(f([u;w1]))

and

f([v1;u]) = f([u; y1]) = f([y1;w1]) = [f(y1), f(u)].

Note that we have

z < v1 < u < y1 < w1 < z1 or z > v1 > u > y1 > w1 > z1.

If O(u) ∩ (u;w1) = ∅, then [u;w1] is a levelable interval of (S, f) and λ(S, f) ≥
l(f([u;w1])) ≥ f(u)−f(y) ≥ µ(S, f)/2. If O(u)∩(u;w1) 6= ∅, then there exist j ∈ N

such that f j(u) = f j(w1) ∈ (u;w1). This implies P (f)∩[u;w1] ⊃ P1(f
j)∩(u;w1) 6=

∅. For any x ∈ P (f), let p(x) be the period of x under f . Take x0 ∈ P (f)∩ [v1;w1]
such that

(2.4) p(x0) = min{p(x) : x ∈ P (f) ∩ [v1;w1]}.
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Suppose p(x0) = k. Then k ≤ j. Take x1 ∈ [v1;u] and x2 ∈ [y1;w1] such that
f(x1) = f(x2) = f(x0) and f−1(f(x0))∩ [v1;w1] ⊂ [x1;x2]. Then (O(x0)−{x0})∩
[x1;x2] = ∅ since otherwise there would be a point y0 ∈ P (f) ∩ (x1;x2) with
p(y0) ≤ k − 1, which contradicts (2.4).

If x0 ∈ [v1;u], then [x0;x2] is a levelable interval of (S, f) and one has λ(S, f) ≥
l(f([x0;x2])) = f(u) − f(y1) ≥ f(u)− f(y) ≥ µ(S, f)/2. If x0 ∈ [y1;w1], then one
also has λ(S, f) ≥ l(f([x1;x0])) ≥ f(u) − f(y1) ≥ µ(S, f)/2. If x0 ∈ [u; y1], then
one still has
{

λ(S, f) ≥ l(f([x0;x2])) ≥ f(x0)− f(y1) ≥ µ(S, f)/4, if f(x0) ≥ [f(u) + f(y1)]/2;
λ(S, f) ≥ l(f([x1;x0])) ≥ f(u)− f(x0) ≥ µ(S, f)/4, if f(x0) ≤ [f(u) + f(y1)]/2.

The proof of Lemma 2.15 is completed. �

Now it is time to prove Theorem 2.8.

Proof of Theorem 2.8 Firstly, let f0 = f . For k ≥ 0, suppose fk ∈ C0(I) has
been defined. If λ(S, fk) = 0, then let Jk = ∅ and fk+1 = fk. If λ(S, fk) > 0, then
take a maximal levelable interval Jk = [vk, yk] of (S, fk) and let fk+1 ∈ C0(I) be
the basic reduction of fk by leveling Jk. Continuing this process, one has sequences
{fn}

∞
n=0 and {Jn}

∞
n=0.

Claim. limk→∞ λ(S, fk) = 0.

Proof of Claim. If Claim does not hold, then there exist ε > 0 and infinitely many
positive integers k1 < k2 < k3 < . . . such that

(2.5) l(fkn
(Jkn

)) = λ(S, fkn
) ≥ ε for all n ≥ 1,

(2.6) lim
n→∞

vkn
= w and lim

n→∞
ykn

= z for some w, z ∈ L(S).

Since f is uniformly continuous, there is δ = δ(ε) > 0 such that

l(f(J)) < ε/3 for every interval J ⊂ I with l(J) < δ.

By (2.6), there exists m > 1 such that |vkm+1 − vkm
| < δ and |ykm+1 − ykm

| < δ.
According to Lemma 2.3, Lemma 2.2-(iv) and (2.6) one has that

l(fkm+1(Jkm+1)) ≤ l(f([vkm+1 ; vkm
])) + l(fkm+1(Jkm

)) + l(f([ykm
; ykm+1 ]))

< ε/3 + 0 + ε/3 < ε.

But this contradicts (2.5). This completes the proof of Claim.

By above claim and Lemma 2.15, one has limn→∞ µ(S, fk) = 0. By Proposition
2.4, f0, f1, f2, . . . converges uniformly to a map g ∈ C0(I), which is a reduction of
fn for all n ≥ 0. Clearly, S is still an invariant set of g, and g|S = f |S. By Lemma
2.14 one has µ(S, g) = 0. Put ϕ = g|L(S). Then ϕ ∈ C0(L(S)) is a reduction of
f , ϕ|S = g|S = f |S, and µ(S, ϕ) = µ(S, g) = 0. By Lemma 2.6, ϕ is monotonic
on every connected component of L(S) − S. Thus ϕ is a normal reduction of f
preserving S. The proof of Theorem 2.8 is completed.



J. H. Mai and S. Shao 11

3. Some results on periodic patterns

As applications of the idea of reductions of interval maps, in this section we study
patterns of periodic orbits. Especially, we will give a new and simple proof of the
converse of Sharkovskĭı’s Theorem (Theorem 1.2). Usually, the proof of Theorem
1.2 is gotten by constructing some concrete examples (see [26, 18]). But here we
use the method of reductions of maps.

3.1. Relation ⊳ on N. Firstly recall some notations. Let I = [a, b] and Fn(I)
be the same as in (1.1). For any m,n ∈ N with m 6= n, write m ⊳ n or n ⊲ m if
Fm(I) ⊂ Fn(I). Then one obtains a relation ⊳ on N. Write

F ∗
n(I) ≡ F ∗(I, n) = Fn(I)−

⋃

{Fm(I) : m ∈ N and m⊳ n}.

For any finite set T , let |T | denote the cardinality of T .

The main results of this part is Theorem 3.4 and Theorem 3.5. To prove them
we need some notions and lemmas.

Definition 3.1. Let f ∈ C0(I) and X = {x1 < x2 < . . . < xn} be a periodic orbit
of f with period n ≥ 1. X is said to be in an odd (resp. even) state under f if
for each i ∈ Zn there exists an open interval Ji with xi ∈ Ji ⊂ I such that f |Ji

is
monotonic but not constant and the cardinality |{i ∈ Zn : f |Ji

is decreasing }| is
odd (resp. even).

Lemma 3.2. Let f ∈ C0(I) and x ∈ Pn(f), n ≥ 1. Suppose O(x) is in an odd or
even state under f . Then for any given integer k ≥ 2, there exists an open interval
U = Uk with x ∈ U ⊂ I such that

(i) U ∩ Pi(f) = ∅ for any i ∈ {1, 2, . . . , kn} − {n, 2n};
(ii) If there exists y ∈ U ∩ Pn(f)− {x}, then O(x) is in an even state under f ,

and [x; y] ∩ Ω(f)− Pn(f) = ∅;
(iii) If there exists y ∈ U ∩ P2n(f), then O(x) is in an odd state under f, x ∈

(y; fn(y)), and [y; fn(y)] ∩ Ω(f)− {x} − P2n(f) = ∅.

Proof. Suppose O(x) = {x1 < x2 < . . . < xn}. Let J1, J2, . . . , Jn be as in Def-
inition 3.1. Then there exists an open interval U = Uk with x ∈ U ⊂ I such

that
⋃kn+n
j=0 f j(U) ⊂

⋃n
i=1 Ji, and (

⋃k
m=0 f

mn+i(U))
⋂

(
⋃k
m=0 f

mn+j(U)) = ∅ for

0 ≤ i < j < n. Note that fn|U is increasing (resp. decreasing) if O(x) is in an even
(resp. odd) state under f . It is easy to check that the properties (i)−(iii) hold. �

Lemma 3.3. If f ∈ C0(I) has a periodic orbit Q of period m, then for any n⊲m, f
has a periodic orbit of period n contained in L(Q).

Proof. Let g be a normal reduction of f preserving Q. Since m⊳n, g has a periodic
orbitQ′ of period n. Since g ∈ C0(L(Q)), one has Q′ ⊂ L(Q). Since g is a reduction
of f , Q′ is also a periodic orbit of f . �

Theorem 3.4. For any f ∈ C0(I) and n ∈ N, if Pn(f) 6= ∅ then there exist a
periodic orbit Q of f with period n and a normal reduction ϕ of f preserving Q
such that Pm(ϕ) = ∅ for all m⊳ n.

Proof. Let Q0 be a periodic orbit of f with period n, and let g be a normal reduction
of f preserving Q0. Then g is piecewise monotonic. Let Sn(g) = {x ∈ Pn(g) : x =
minO(x, g)} and let v = supSn(g). If v ∈ Pn(g), take Q = O(v, g)(= O(v, f)) and
let ϕ be a normal reduction of g preserving Q. Then Pm(ϕ) = ∅ for all m ⊳ n. If
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not, it follows from Lemma 3.3 that g has a periodic orbit of period n contained in
L(Q), which contradicts the definition of v.

If v /∈ Pn(g), then v ∈ Pk(g) for some divisor k of n. By Lemma 3.2, O(v, g)
must be in an odd state under g and k = n/2. Choose y ∈ Sn(g) such that
v − y is sufficiently small. Then [y, v) ∩ Ω(g) ⊂ Pn(g). Take Q = O(y, g) and let
ϕ be a normal reduction of g preserving Q. Then we still have Pm(ϕ) = ∅ for
all m ⊳ n. If not, ϕ has a periodic orbit of period m contained in L(Q). Since
[y, v) ∩ Ω(g) ⊂ Pn(g), this m periodic orbit is contained in L(Q)− [y, v]. Then by
Lemma 3.3 ϕ (and hence g) has a periodic orbit of period n contained in L(Q)−[y, v],
which contradicts the definition of v. �

From Theorem 3.4 we see that Fm(I) 6= Fn(I) for all m 6= n ∈ N. Moreover we
have:

Theorem 3.5. Let m1,m2,m3, . . . and n1, n2, n3, . . . be two infinite sequences of
positive integers. Suppose mi ⊳ nj for all i, j ∈ N. Then

∞
⋂

i=1

Fni
(I)−

∞
⋃

j=1

Fmj
(I) 6= ∅.

Proof. Let a0 = a, aj = (aj−1 + b)/2, and Ij = [aj−1, aj ] for j = 1, 2, . . . . Then
by Theorem 3.4 one can construct a map g ∈ C0(I) such that g(Ij) ⊂ Ij and
g|Ij
∈ F ∗

nj
(Ij) for all j ≥ 1. Clearly, g ∈

⋂∞
i=1 Fni

(I)−
⋃∞
j=1 Fmj

(I). �

3.2. Patterns of periodic orbits. Now we study patterns of periodic orbits.
Denote Cn the set of all cyclic permutations of Zn and

C =

∞
⋃

n=1

Cn.

Let I = [a, b], f ∈ C0(I) and Q = {x1 < x2 < . . . < xn} be a periodic orbit of f . A
cyclic permutation θ ∈ Cn is called a pattern of Q if f(xi) = xθ(i) for any i ∈ Zn.
Let

Fθ(I) ≡ F (I, θ) = {f ∈ C0(I) : f has a periodic orbit of pattern θ}.

For any γ and θ ∈ C with γ 6= θ, one says that γ forces θ if Fγ(I) ⊂ Fθ(I), and
denote it by γ → θ or θ ← γ. Then one obtains a transitive relation → on C. The
relation → is a refinement of the Sharkovskĭı ordering ⊳, which has been studied
by lots of authors (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 23, 24] etc.). In the following
we will also study this relation. By means of reductions of maps, we can get some
new results.

For any θ ∈ C and any Θ ⊂ C, let

E(θ) = {γ : γ ∈ C and γ → θ}, E(Θ) = {γ ∈ C : γ → θ for all θ ∈ Θ}.

and

F ∗
θ (I) ≡ F ∗(I, θ) = Fθ(I)−

⋃

{Fγ(I) : γ ∈ C and γ → θ}.

With a few changes in the proofs of Theorems 3.4 and 3.5 (for example, changing
“periodic orbit of period n ” to “periodic orbit of pattern θ ” etc.), one has the
following two theorems.



J. H. Mai and S. Shao 13

Theorem 3.6. For any f ∈ Fθ(I), there exist a periodic orbit Q of f with pattern
θ and a normal reduction ϕ of f preserving Q such that

ϕ ∈ F ∗
θ (L(Q)) = Fθ(L(Q))−

⋃

{Fγ(L(Q)) : γ ∈ E(θ)}.

Theorem 3.7. For any Θ ⊂ C with Θ 6= ∅,
⋂

{Fθ(I) : θ ∈ Θ} −
⋃

{Fγ(I) : γ ∈ E(Θ)} 6= ∅.

As a corollary of Theorem 3.6, one has the following proposition, which is due
to Baldwin [2].

Proposition 3.8. Let θ, γ ∈ C with θ 6= γ. If γ → θ, then θ 6→ γ.

Definition 3.9. Let γ ∈ Cn, n ≥ 1, and η ∈ C2n. η is called a doubling of γ if
η({2i− 1, 2i}) = {2γ(i)− 1, 2γ(i)} for all i ∈ Zn.

Example 3.10. See Figure 3, η ∈ C4 is a doubling of γ ∈ C2, but ξ ∈ C4 is not.

γ η ξ

Figure 3

The following result is due to Bernhard [3], and a generalization (Theorem 6.3)
will be given in Section 6.

Proposition 3.11. Let γ, θ ∈ C, and η be a doubling of γ. Then η → γ. Moreover,
if η → θ and γ 6= θ, then γ → θ.

Theorem 3.12. Let Θ ⊂ C, and Γ = {γ1, γ2, . . .} ⊂ E(Θ). If for any n ∈ N

there exists an integer q(n) > n such that γn → γq(n), then every f ∈ Fγ1(I) has a
reduction ϕ ∈

⋂

{Fθ(I) : θ ∈ Θ} −
⋃

{Fγn
(I) : n ∈ N}.

Proof. Note f ∈ Fγ1(I) ⊂ Fγq(1)
(I). By Theorem 3.6, f has a periodic orbit

Q1 of pattern γq(1) and a normal reduction f1 preserving Q1 such that f1 ∈
F ∗
γq(1)

(L(Q1)). Write β1 = γq(1). For n ≥ 2, assume Qn−1, βn−1 and fn−1 have

been defined satisfying fn−1 ∈ F ∗
βn−1

(L(Qn−1)). If fn−1 /∈ Fγn
(L(Qn−1)), then

let Qn = Qn−1, βn = βn−1 and fn = fn−1. If fn−1 ∈ Fγn
(L(Qn−1)), then let

βn = γq(n). Since Fγn
(L(Qn−1)) ⊂ Fβn

(L(Qn−1)), one can take a periodic orbit
Qn of fn−1 with pattern βn and a normal reduction fn of fn−1 preserving Qn
such that fn ∈ F ∗

βn
(L(Qn)). Write Jn = L(Qn) for n ≥ 1. By induction, one

obtains infinite sequences {fn}∞n=1, {Qn}
∞
n=1, {Jn}

∞
n=1 and {βn}∞n=1 which satisfy

that Jn = L(Qn) ⊃ Jn+1, βn ∈ {γq(i) : i = 1, 2, . . . , n} and fn ∈ F ∗
βn

(Jn)− Fγn
(Jn)

is a reduction of fn−1 for all n ≥ 1. Let J =
⋂∞
n=1 Jn. By Proposition 2.4,

f1|J , f2|J , f3|J , . . . converges uniformly to a map g ∈ C0(J), which is a reduction
of f and of each fn. By Lemma 2.2, g /∈

⋃

{Fγn
(J) : n ∈ N}.

For any θ ∈ Θ and n ∈ N, since βn ∈ Γ ⊂ E(Θ) ⊂ E(θ), one has fn ∈ Fβn
(Jn) ⊂

Fθ(Jn). Let

Vn = {x ∈ P (fn) : the pattern of O(x, fn) is θ} and vn = inf Vn.

Then vn ∈ P (fn). Since the pattern of Qn under fi(1 ≤ i ≤ n) is βn and βn 6=
θ, one has V1 ∩ Qn = ∅. Note that fn is piecewise monotonic. It follows from
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Lemma 3.2 that vn ∈ Vn. By Lemma 2.2, one has V1 ⊃ V2 ⊃ V3 ⊃ . . .. Hence
v1 ≤ v2 ≤ v3 ≤ . . .. Let w = limn→∞ vn. Then w ∈ P (g). Suppose the period
of θ (and of O(vn, fn)) is k. For i ∈ N, let vin = f in(vn), and let (cin, d

i
n) be the

connected component of Jn−Qn containing vin. Then {cin, d
i
n} ⊂ Qn, and fn|[ci

n,d
i
n]

is monotonic.

Suppose the pattern of O(w, g) is ζ. If ζ 6= θ, then, by Lemma 3.2, θ must be a
doubling of ζ and there exists a closed interval Uε = [w − ε, w + ε] ⊂ (ck1 , d

k
1) such

that for any n ≥ 1 and any x ∈ Uε∩P (fn), the pattern of O(x, f) is θ and f in(Uε) ⊂
[cin, d

i
n] for all i ∈ Zk. Take m ∈ N such that vm ∈ [w − ε, w) and vm < vm+1 < w.

Then vm ∈ Pk(fm)− P (fm+1) and there is j ∈ Zk such that fm+1(v
j
m) 6= fm(vjm).

let [y1, y2] be the connected component of f−1
m+1(fm+1(v

j
m))∩[cjm, d

j
m] containing vjm.

Since fm+1 is a reduction of fm, by Definition 2.1 one has cjm ≤ y1 < vjm < y2 ≤ djm
and

fm(y1) = fm+1(y1) = fm+1(y2) = fm(y2) = fm+1(v
j
m) 6= fm(vjm).

This implies that fm|[cj
m,d

j
m] is not monotonic, which yields a contradiction. Thus

ζ = θ and g ∈ Fθ(J).

To sum up, we have proved that g ∈
⋂

{Fθ(J) : θ ∈ Θ} −
⋃

{Fγn
(J) : n ∈ N}.

Suppose J = [c, d]. Define ϕ ∈ C0(I) by

ϕ(x) = g(max{c,min{x, d}}), for any x ∈ I.

Then ϕ is also a reduction of f and ϕ ∈
⋂

{Fθ(I) : θ ∈ Θ}−
⋃

{Fγn
(I) : n ∈ N}. �

3.3. The converse of Sharkovskĭı’s theorem. To conclude this section, we go
back to the converse of Sharkovskĭı’s theorem. Let F (I, 2∞) and Φ(I, 2∞) be the
same as in Theorem 1.2. By an argument analogous to the proof of Theorem 3.12,
one has

Theorem 3.13. Every f ∈ Φ(I, 2∞) has a reduction ϕ ∈ F (I, 2∞)− Φ(I, 2∞).

According to Theorem 3.13 one can obtain a family of maps in F (I, 2∞) −
Φ(I, 2∞), which are distinct from those given by Delahaye [18].

4. Patterns of invariant sets of interval maps

In this section we introduce the definition of patterns of invariant sets of interval
maps, and give some general results on the conditions under which one pattern can
force another one. In the sequel, we will use the results of this section to study
some special patterns.

4.1. Patterns of invariant sets of interval maps. Firstly we introduce some
notions. Recall that a pair (X,ψ) is called a line system if X is a nonempty
bounded subset of R with the usual metric, ψ is a continuous map from X to X ,
and ψ can be extended to an interval map. Note that if (X,ψ) is a line system then
there exists a unique continuous map ψ : X → X, called the closure extension of
ψ, such that ψ|X = ψ. A line system (X,ψ) is said to be compact if X is compact.
Denote by Ψ (resp. Ψc) the family of all line systems (resp. compact line systems).

For any nonempty subsets X and Y of R, an injection h : X → Y is said to be
order-preserving if h(x) < h(y) for all x, y ∈ X with x < y. It is clear that if



J. H. Mai and S. Shao 15

both X and Y are compact then every order-preserving bijection from X to Y is a
homeomorphism.

Definition 4.1. Let (X,ψ) and (Y, ξ) be two line systems. We say that (X,ψ) and
(Y, ξ) have the same pattern (for convenience, sometimes we also say that ψ and
ξ have the same pattern) if there exists an order-preserving bijection h : X → Y
such that hψ = ξh.

If (X,ψ) and (Y, ξ) have the same pattern, then denote it by (X,ψ) ≈ (Y, ξ), or
ψ ≈ ξ when it is possible without ambiguity.

Example 4.2. Let X = [−1, 1], J = [−2, 2], and let ψ : X → X and f : J → J be
strictly decreasing continuous maps satisfying

ψ(x) = −x, if x ∈ [−1, 0] ∪ {1/n : n ∈ N};

ψ(x) > −x, if x ∈ (
1

n+ 1
,
1

n
), n ∈ N.

f(y) =

{

−y, if y ∈ [−2, 1];
ψ(y − 1)− 1, if y ∈ [1, 2].

Let Y = [−2,−1) ∪ {0} ∪ (1, 2] and ξ = f |Y . Then (X,ψ) and (Y, ξ) have the
same pattern. Note that their closure extensions (X,ψ) and (Y , ξ) do not have
the same pattern. Since X is compact but Y is not, there is no homeomorphism
H : X → Y such that Hψ = ξH , and hence (X,ψ) and (Y, ξ) are not topologically
conjugate.

Remark 4.3. Because of this example and many other analogous examples, in Def-
inition 4.1 we do not require X and Y to be compact nor do we require the order
preserving bijection h to be a homeomorphism.

The reason why we have to focus on Ψ but not only Ψc is the phenomenon
happened in Example 4.2 (and Example 4.7 etc.) but not just because Ψ is a
bigger family than Ψc.

Denote by Ψ∗ the set of equivalence classes in Ψ under the equivalence relation
≈, i.e. Ψ∗ = Ψ/ ≈. Then Ψ∗ can be regarded as the set of patterns of invariant
sets of interval maps. For (X,ψ) ∈ Ψ, one uses [(X,ψ)] to denote the equivalence
class containing (X,ψ). It is easy to see that one can regard C as a subset of Ψ∗.

4.2. Forcing relation. Let (X,ψ) ∈ Ψ, I = [a, b] and f : I → I be an interval
map. f is said to have an invariant set S with the pattern of (X,ψ) or f
exhibits (X,ψ) on S if there exists an f -invariant set S such that f |S and ψ have
the same pattern, i.e. (S, f |S) ≈ (X,ψ).

Definition 4.4. Let (X,ψ), (Y, ξ) ∈ Ψ. We say [(X,ψ)] forces [(Y, ξ)] if if each
interval map exhibiting (X,ψ) also exhibits (Y, ξ). Denote it by [(X,ψ)]⇒ [(Y, ξ)],
or (X,ψ)⇒ (Y, ξ) and ψ ⇒ ξ when there is no confusion.

So we obtain a transitive relation ⇒ on Ψ∗. The relation → defined in Section
3 is a restriction of ⇒ to C. Hence, conversely, the relation ⇒ is an extension of
→. Note that in Definition 4.4 we do not insist (X,ψ) 6= (Y, ξ), thus we have
(X,ψ)⇒ (X,ψ) for all (X,ψ) ∈ Ψ.
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Example 4.5. Let ψ : Z3 → Z3 and ξn : Zn → Zn be defined by ψ(1) = ψ(3) =
1, ψ(2) = 3, ξn(n) = 1, and ξn(i) = i+ 1 for 1 ≤ i < n. Then it is well known that
ψ forces ξn for all n ≥ 1.

Example 4.6. Let X = {0, 1/2, 1} and ψ : X → X be defined by ψ(0) =
1/2, ψ(1/2) = 1 and ψ(1) = 0. Let Y = [0, 1] and ξ : Y → Y satisfy that ξ|X = ψ
and ξ is linear on interval [0, 1/2], [1/2, 1] (See Figure 4). Then [(X,ψ)] 6= [(Y, ξ)],
but [(X,ψ)] ⇒ [(Y, ξ)] and [(Y, ξ)] ⇒ [(X,ψ)]. Hence the forcing relation on Ψ∗ is
not a partial ordering.

0 1/2 1

(X,ψ)
0 1/2 1

1/2

1

(Y, ξ)

Figure 4

Example 4.7. Let X = {−3,−2, 0, 2, 3}, Y = {−3, 0, 3} ∪ {bn,−bn : n ∈ N} and
W = {−3, 0, 3} ∪ {cn,−cn : n ∈ N}, where

bn = 2−n, cn = 1 + 2−n, for all n ∈ N .

Define ψ ∈ C0(X), ξ ∈ C0(Y ) and η ∈ C0(W ) by

ψ(0) = ξ(0) = η(0),

ψ(2) = ψ(3) = ξ(b1) = ξ(3) = η(c1) = η(3) = 3,

ψ(−2) = ψ(−3) = ξ(−b1) = ξ(−3) = η(−c1) = η(−3) = −3 and

ξ(bn+1) = bn, ξ(−bn+1) = −bn, η(cn+1) = cn, η(−cn+1) = −cn

for all n ∈ N . Let Y ′ = Y − {0}, W ′ = W − {0}, and let ξ′ = ξ|Y ′ , η′ = η|W ′ .

Then {(X,ψ), (Y, ξ), (W, η), (Y ′, ξ′), (W ′, η′) } ⊂ Ψ. It is easy to see that

(4.1) (X,ψ) ⇒ (Y, ξ) ≈ (W, η) ⇒ (Y ′, ξ′) ≈ (W ′, η′) ⇒ (X,ψ).

Since [(X,ψ)], [(Y, ξ)] and [Y ′, ξ′)] are pairwise unequal, from (4.1) we see that the
relation ⇒ is not a partial order on Ψ∗. Note that X and Y are compact, and
W, Y ′ and W ′ are not compact. Obviously, there exists an interval map f such
that (X,ψ) is a subsystem of f and hence f exhibits (Y, ξ), but f has no compact
invariant set with the pattern of (Y, ξ). This example also explains why we have to
consider the relation ≈ in Ψ but not only in Ψc .

4.3. A useful criterion for the forcing relation. In the rest of this section we
will give some conditions of a pattern forcing another. Theorem 4.14 is the main
result of this section, and Theorem 4.12 is a useful criterion. We begin with some
notions and notations used in the sequel.
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Definition 4.8. Let (X,ψ) ∈ Ψ and I = L[X ] = [inf X, supX ]. A map g ∈ C0(I)
is called a monotonic extension (resp. the linear extension) of ψ if g|X = ψ
and g is monotonic (resp. linear) on every connected component of I −X . A map
g ∈ C0(I) is called a strictly monotonic extension of ψ if g|X = ψ, and for any
connected component J = (v, y) of I − X , when g(v) 6= g(y) then g|J is strictly
monotonic, and when g(v) = g(y) then g|J is constant.

Note that any map g ∈ C0(L(S)) is both monotonic and linear on every singleton
in L(S). Thus, g is a monotonic (resp. strictly monotonic, resp. linear) extension of
ψ if and only if g is a monotonic (resp. strictly monotonic, resp. linear) extension
of the closure extension ψ. Note that, for each line system (X,ψ), ψ has a unique
linear extension.

Remark 4.9. Let X and Y be nonempty bounded subsets of R with an order-
preserving bijection h : X → Y , let K be a connected component of L[X ]−X and
L[X ] = [a, b ]. It is easy to see that

(1) If K = (r, s) is an open interval, then the corresponding open interval
(h(r), h(s)) is also connected component of L[Y ]− Y .

(2) If K = [r, s ] is a closed interval, then it is possible that sup(h(X ∩ [a, r])) =
inf(h(X∩[s, b ])). In this case, the connected component of L[Y ]−Y corresponding
to K is a one point set {sup(h(X ∩ [a, r]))}.

Conversely, if K = {r} is a one point set and r /∈ {a, b}, then it is possible that
sup(h(X ∩ [ a, r])) < inf(h(X ∩ [ r, b ])). In this case, the connected component of
L[Y ] − Y corresponding to K is a closed interval [ sup(h(X ∩ [ a, r])), inf(h(X ∩
[r, b ])) ].

(3) If K is a semi-open interval, say, K = (r, s ], then it is possible that h(r) =
inf(h(X ∩ [s, b ])). In this case, there is no connected component of L[Y ] − Y
corresponding to K.

(4) If X is compact, then every connected component of L[X ]−X is an open
interval.

According to Remark 4.9, in the following we only consider the connected com-
ponents of L[X ]−X which are open intervals.

Definition 4.10. Let X ⊂ R be a nonempty bounded set, and I = L(X). A
connected component K of I −X is called an open complementary interval of
X if K is an open interval.

Denote by K(X) the set of all open complementary intervals of X . Write

U(X) =
⋃

{J : J ∈ K(X)}.

Then K(X) ⊂ K(X), U(X) ⊂ I − X , and U(X) = I − X if and only if X is
compact. For any y ∈ X ∪ U(X), let

K(y,X) =

{

J, if y ∈ J and J ∈ K(X) ;

y, if y ∈ X .

Let (X,ψ) be a line system. For any monotonic extension f of ψ and any orbit
O(x, f) contained in X ∪ U(X), write

I(x, f,X) = (K(x,X) , K(f(x), X) , K(f2(x), X) , . . . ) ,
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Im(x, f,X) = (K(x,X) , K(f(x), X) , . . . , K(fm(x), X)) , (m ≥ 0).

The infinite sequence I(x, f,X) is called the itinerary of x under f relative to

X . It is easy to see that, if Im(x, f,X) = Im(y, f,X) but fm+1(x) 6= fm+1(y) ,
then K(f i(y) , X) = K(f i(x) , X) ⊂ U(X) for 0 ≤ i ≤ m.

For any nonempty subsets X and Y of R , one writes X < Y if x < y for any
x ∈ X and any y ∈ Y.

Lemma 4.11. Let X,U(X) and f be as above. Suppose O(x, f) and O(y, f) are two
orbits contained in X ∪ U(X). Then x < y if one of the following three conditions
holds:

(i) K(x,X) < K(y,X).
(ii) There is an m ≥ 0 such that Im(x, f,X) = Im(y, f,X),K(fm+1(x), X) <

K(fm+1(y), X) and the number |{0 ≤ i ≤ m : f |K(fi(x),X)is decreasing}| is even.

(iii) There is an m ≥ 0 such that Im(x, f,X) = Im(y, f,X), K(fm+1(x), X) >
K(fm+1(y), X), and the number |{0 ≤ i ≤ m : f |K(fi(x),X) is decreasing}| is odd.

The proof of Lemma 4.11 is analogous to that of [17, Lemma II.1.2], and is
omitted.

Let (J0, J1, J2, . . .) be an infinite sequence of open complementary intervals of
X such that Jn = (rn, sn) and [ψ(rn);ψ(sn)] ⊃ Jn+1 for all n ≥ 0. J0 is said to be
expanding under ψ relative to (J0, J1, J2, . . .) if there exist j and k ∈ N such
that ψj(r0) /∈ ∂Jj and ψk(s0) /∈ ∂Jk.

Recall that an orbit O(x, g) of a map g ∈ C0(X) is said to be eventually

periodic if it is a finite set. O(x, g) is called an infinite orbit if it is an infinite
set. For m ∈ N, an infinite sequence (K0,K1,K2, . . . , ) is said to be periodic and
have period m if

(Km,Km+1,Km+2, . . .) = (K0,K1,K2, . . .) 6= (Ki,Ki+1,Ki+2, . . .), for 1 ≤ i < m.

The following theorem is a useful criterion for the forcing relation.

Theorem 4.12. Let (X,ψ), (Z, ξ) be line systems. Suppose that there exists a
monotonic extension f of ψ satisfying the following conditions:

(C.1) f has an invariant set V ⊂ X ∪U(X) such that f |V and ξ have the same
pattern;

(C.2) I(x, f,X) 6= I(y, f,X) for any x, y ∈ V ∩ U(X) with x 6= y;

(C.3) For any x ∈ V ∩U(X), if O(x, f) is an infinite orbit contained in U(X) or
is a periodic orbit in an even state, then the open complementary interval K(x,X)
is expanding under ψ relative to (K(x,X),K(f(x), X),K(f2(x), X), . . .).

(C.4) For any J = (v, y) ∈ K(X), if ψ(v) = ψ(y) then V ∩ J = ∅.

Then [(X,ψ)]⇒ [(Z, ξ)].

Proof. Consider any g ∈ C0(I), where I is a compact interval. Assume g has an
invariant set Y with the pattern of ψ. Then there is an order preserving bijection
h : X → Y such that gh = hψ. In order to prove ψ ⇒ ξ, it suffices to show that g
has an invariant set V ′ with the pattern of f |V . Suppose K(X) = {Ji = (ri, si) :
i ∈ Z ′}, where Z ′ is a subset of N. For every i ∈ Z ′, let r′i = h(ri), s

′
i = h(si), and

J ′
i = (r′i, s

′
i). Then J ′

i is an open complementary interval of Y , K(Y ) = {J ′
i : i ∈ Z ′}

and U(Y ) =
⋃

{J ′
i : i ∈ Z ′}. Since g(Y ) ⊂ Y , we have g(Y ) ⊂ Y . By Theorem 2.8,
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there exists a normal reduction ϕ of g preserving Y . Obviously, one has

(4.2) ϕ(J ′
i) ⊃ J

′
k if and only if f(Ji) ⊃ Jk, i, k ∈ Z ′.

Let U ′ = U(Y ), and U ′′ = {x ∈ U ′ : ϕ(x) = g(x)}. Then, by Definition 2.1 and
Lemma 2.2, ϕ is constant on every connected component of U ′−U ′′, P (ϕ)∩U ′ ⊂ U ′′

and

(4.3) ϕ(∂J ′
i ∪ (J ′

i ∩ U
′′)) = ϕ(J ′

i), for any i ∈ Z ′.

We are going to show that there exists an order preserving injection H : V →
Y ∪ U ′′ such that Hf |V = ϕH(= gH). Define β : X ∪ K(X) → Y ∪ K(Y ) by
β(x) = h(x) for any x ∈ X and β(Ji) = J ′

i for any i ∈ Z ′. Then β is an order
preserving bijection. For any sequence (K0,K1, . . . , ) of elements in X ∪K(X) and
any n ∈ N, let

β((K0,K1, . . . ,Kn)) = (β(K0), β(K1), . . . , β(Kn)),

β((K0,K1,K2, . . .)) = (β(K0), β(K1), β(K2), . . .).

Let V0 = V ∩X . For any v ∈ V0, define H(v) = h(v). Then

(4.4) I(H(v), ϕ, Y ) = β(I(v, f,X)).

Let V1 = P (f |V ) ∩ U(X). Take a subset V2 ⊂ V1 such that, for every pe-
riodic orbit Q of f contained in U(X), V2 ∩ Q contains exactly one point. For
any v ∈ V2, we claim that there is a point v′ ∈ U ′′ ∩ P (ϕ) (and then we de-
fine H(v) = v′) such that (4.4) holds. In fact, suppose the period of v under f
is m, and I(v, f,X) = (Ji(0), Ji(1), Ji(2), . . .). Then, by the condition (C. 2), the
period of (Ji(0), Ji(1), Ji(2), . . .) is also m. If O(v, f) is in an odd state, then it
follows from (4.2) that there exists a point y ∈ J ′

i(0) such that I2m(y, ϕ, Y ) =

(J ′
i(0), J

′
i(1), J

′
i(2), . . . , J

′
i(2m)) and (ϕm(y)− y) · (ϕ2m(y)− ϕm(y)) ≤ 0. Hence there

is a point v′ = H(v) ∈ [y;ϕm(y)] ∩ Pm(ϕ) satisfying (4.4). If O(v, f) is in an even
state, then it follows from the condition (C. 3) that there exist q and t ∈ J ′

i(0) with

q < t such that ϕm(q) = r′i(0), ϕ
m(t) = s′i(0), and ϕn((q, t)) ⊂ J ′

i(n) for all n ∈ Zm.

Thus there is also a point v′ = H(v) ∈ (q, t) ∩ Pm(ϕ) satisfying (4.4).

For any v ∈ V1 − V2, take u ∈ V2 and k ≥ 1 such that v = fk(u), and put
H(v) = ϕk(H(u)). Obviously, for such v and H(v), (4.4) still holds.

Let V3 = {x ∈ V : O(x, f) ⊂ U(X) − P (f)}. Take V4 ⊂ V3 such that
⋃∞
p=0

⋃∞
n=0 f

−p(fn(V4)) ⊃ V3 and O(x, f)∩O(y, f) = ∅ for any x, y ∈ V4 with x 6=

y. For any v ∈ V4 and any n ∈ N, it follows from (4.2) and (4.3) that there ex-
ists v′n ∈ U ′′ such that On(v′n, ϕ) ⊂ U ′′ and In(v

′
n, ϕ, Y ) = β(In(v, f,X)). Let

v′ = H(v) = lim infn→∞ v′n. Then by condition (C.3) it is easy to check that
O(v′, ϕ) ⊂ U ′′, and hence (4.4) holds for v ∈ V4.

Let V5 =
⋃∞
n=0 f

n(V4). For any u ∈ V4, n ∈ N and v = fn(u) ∈ V5, let
v′ = H(v) = ϕn(H(u)). Then O(v′, ϕ) ⊂ O(H(u), ϕ) ⊂ U ′′, and (4.4) holds for
v ∈ V5.

Finally, for n = 1, 2, 3, . . . and for every w ∈ f−n(V0 ∪V1 ∪V5)∩V − f−n+1(V0 ∪
V1 ∪ V5), if H(f(w)) has been defined, then by (4.2) and (4.3) and condition (C.4)
one can continue to choose a point w′ = H(w) ∈ U ′′ such that

ϕ(H(w)) = H(f(w)) and I(H(w), ϕ, Y ) = β(I(w, f,X)).
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Therefore, noting V =
⋃∞
n=0(f

−n(V1 ∪ V2 ∪ V5) ∩ V ), one obtains a map H : V →
U ′′ ∪ Y which satisfies Hf |V = ϕH, H(Pm(f |V )) ⊂ Pm(ϕ) for any m ∈ N, and

(4.5) I(H(x), ϕ, Y ) = β(I(x, f,X)) for any x ∈ V.

By (4.5), condition (C.2) and Lemma 4.11, H is an order preserving injection. Let
V ′ = H(V ). Then g|V ′(= ϕ|V ′) and f |V have the same pattern. So the proof of
Theorem 4.12 is completed. �

4.4. Main results of this section.

Definition 4.13. Let (V, ξ) be a line system, and x, y ∈ V with x 6= y. The orbits
O(x, ξ) and O(y, ξ) are said to be companionate orbits of ξ if

(i) ξ|[ξk(x);ξk(y)]∩V is monotonic for all k ≥ 0;

(ii) for j > k ≥ 0, if [ξj(x); ξj(y)]∩ [ξk(x); ξk(y)] contains more than one points,
then [ξj(x); ξj(y)] = [ξk(x); ξk(y)].

Two companionate orbits O(x, ξ) and O(y, ξ) are said to be self-companionate

if O(y, ξ) ⊂ O(x, ξ) or O(x, ξ) ⊂ O(y, ξ).

It is easy to check that ifO(x, ξ) andO(y, ξ) are companionate infinite orbits then
they have the same pattern. And if O(x, ξ) and O(y, ξ) are self-companionate peri-
odic orbits of period n, then n is even, y = ξn/2(x) and [ξi(x); ξi(y)]∩[ξj(x); ξj(y)] =
∅ for 0 ≤ i < j < n/2.

Theorem 4.14. Let (X,ψ) and (Z, ξ) be line systems, and X be compact. Suppose
ξ has no companionate orbits. Then [(X,ψ)]⇒ [(Z, ξ)] if and only if there exists a
monotonic extension of (X,ψ) which exhibits ξ.

Proof. The necessity is clear. We now prove the sufficiency. Let U(X) and I =
[inf X, supX ] be the same as in Definition 4.8. Since X is compact, we have I =
X ∪ U(X). Assume there is a monotonic extension f of ψ which has an invariant
set W with the pattern of ξ. In order to prove ψ ⇒ ξ, it suffices to show that there
exists an order-preserving injection H : W → I such that fH = Hf |W and the
conditions (C.2)−(C.4) in Theorem 4.12 hold for V = H(W ). Let

W0 = {v ∈ W : O(v, f) ⊂ U(X)},

V1 = {v ∈ W0 : for any n ≥ 0,K(fn(v), X) is expanding under ψ relative to
(K(fn(v), X),K(fn+1(v), X),K(fn+2(v), X), . . .)},

V2 = {v ∈ W0 : there exists a j ≥ 0 such that O(f j(v), f) is a periodic orbit in
an odd state},

V3 = {v ∈ W0 : O(v, f) is an infinite orbit and K(v,X) is not expanding under
ψ relative to (K(v,X),K(f(v), X),K(f2(v), X), . . .)},

V4 = {v ∈ W0 : O(v, f) is a periodic orbit in an even state and K(v,X) is not
expanding under ψ relative to (K(v,X),K(f(v), X),K(f2(v), X), . . .)},

V5 =
⋃∞
i=0 f

−i(V3) ∩W ,

V6 =
⋃∞
i=0 f

−i(V4) ∩W ,

and
W1 = {v ∈ W : O(v, f) ∩X 6= ∅},

V7 = W1 ∩X (= W ∩X),

V8 = f−1(V7) ∩W1 − V7 (= f−1(V7) ∩W ∩ U(X)),

V81 = {v ∈ V8 : f |K(v,X) is not constant },
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V82 = {v ∈ V8 : f |K(v,X) is constant },

V91 =
⋃∞
i=0 f

−i(V81) ∩W1,

V92 =
⋃∞
i=0 f

−i(V82) ∩W1.

Then one has W0 ∪W1 = W , W0 ∩W1 = ∅, V3 ⊂ V5, V4 ⊂ V6,
⋃6
i=1 Vi = W0,

V81 ⊂ V91, V82 ⊂ V92, and V7 ∪ V91 ∪ V92 = W1. Note that V1 ∪ V2,V5, V6, V7, V91

and V92 are pairwise disjoint, and V1 ∪ V2, V3,V4, V5, V6, V7, V7 ∪ V91 and V7 ∪ V92

are all invariant under f .

Take V30 ⊂ V3 and V40 ⊂ V4 such that
⋃∞
i=0

⋃∞
n=0 f

−i(fn(Vj0)) ⊃ Vj+2, (j =
3, 4), and O(x, f) ∩ O(y, f) = ∅ for any {x, y} ⊂ V30 ∪ V40 with x 6= y. Denote
V31 =

⋃

{O(v, f) : v ∈ V30}. Then
⋃∞
i=0 f

−i(V31 ∪ V4) ⊃ V5 ∪ V6.

We now define a map H : W → I as follows:

Step 1. For any v ∈ V1 ∪ V2 ∪ V7 ∪ V91, let H(v) = v.

Step 2. For any v ∈ V30 ∪ V40, since K(v,X) is not expanding under ψ rela-
tive to (K(v,X),K(f(v), X), . . .), there exists yv ∈ ∂K(v,X) such that ψn(yv) ∈
∂K(fn(v), X) for all n ≥ 0. Note that if v ∈ V40 and if the period of v is k, then
ψk(yv) = fk(yv) = yv since O(v, f) is in an even state. Thus we can put H(v) = yv,
and put H(fn(v)) = ψn(yv) (= fn(H(v)) for all n ≥ 1. Hence H |(V31∪V4) is defined.

Step 3. For n = 1, 2, 3, . . . and for every v ∈ f−n(V31 ∪V4 ∪V7)∩W − f−n+1(V31 ∪

V4 ∪ V7), if H(f(v)) has been defined and H(f(v)) ∈ K(f(v), X), then we can take

a point v′ ∈ K(v,X) such that f(v′) = H(f(v)), (particularly, if n = 1 and v ∈ V82,
we take v′ ∈ ∂K(v, z); if v ∈ V91, we take v′ = v) and then we put H(v) = v′.

From these three steps we obtain a map H : W → I which satisfies

(4.6) fH = Hf |W and H(v) ∈ K(v,X) for all v ∈W.

Now we proveH is an order-preserving injection. We divide the proof into several
claims.

Claim 1. f |W has no companionate orbits.

Since f |W and ξ have the same pattern, and ξ has no companionate, we have
Claim 1.

Claim 2. If v ∈ V31, then fn([H(v); v]) = [Hfn(v); fn(v)] and [Hfn(v); fn(v)]∩
[H(v); v] = ∅ for each n ∈ N.

Proof of Claim 2. Note that O(v, f) is an infinite orbit in U(X), f is monotonic
on every connected component of U(X), and Hf i(v) = f iH(v) ∈ X for all i ≥ 0.
Thus fn([H(v); v]) = [Hfn(v); fn(v)] for n ∈ N. Write vi = f i(v). If Claim 2 is not
true, then there is a minimal positive integer n such that [H(vn); vn]∩[H(v); v] 6= ∅.
This implies that one of the following three cases holds:

Case 1. H(vn) = H(v) and (H(vn); vn] ∩ (H(v); v] 6= ∅. In this case, for i =
1, 2, 3, . . . , one has H(vin) = H(v), and

(H(vin); vin] ∩ (H(vin−n); vin−n]

= f (i−1)n([H(vn); vn]) ∩ f (i−1)n([H(v); v])− {H(v)} 6= ∅

It follows that (H(vin); vin] ∩ (H(v); v] 6= ∅ and (v, vn, v2n, v3n, . . .) is a strictly
monotonic sequence of points in

⋃∞
i=0(H(v); vin] ⊂ K(v,X). Obviously, for 0 ≤ k <

j < n, (vj , vn+j , v2n+j , . . .) is also a strictly monotonic sequence in
⋃∞
i=0(H(vj); vin+j ]
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⊂ K(vj , X) and (
⋃∞
i=0(H(vk); vin+k])

⋂

(
⋃∞
i=0(H(vj); vin+j ]) = ∅. Hence O(v, f)

and O(vn, f) are companionate orbits. But this contradicts Claim 1.

Case 2. H(vn) 6= H(v) and (H(vn); vn] ∩ (H(v); v] 6= ∅. In this case, letting w
be another endpoint of the open interval K(v,X) except H(v), we have H(vn) =
w, vn ∈ (H(v); v), v ∈ (vn;w) and H(v2n) = H(v). Similar to Case 1, it is
easy to see that (vj , v2n+j , v4n+j , v6n+j , . . .) is a strictly monotonic sequence in
⋃∞
i=0(H(vn+j); v2in+j ] ⊂ K(vn+j , X) = K(vj , X) for 0 ≤ j <∞ and

(
∞
⋃

i=0

(H(vn+k); v2in+k]) ∩ (
∞
⋃

i=0

(H(vn+j); v2in+j ]) = ∅ for 0 ≤ k < j < 2n.

Hence O(v, f) and O(v2n, f) are companionate orbits. But this also contradicts
Claim 1.

Case 3. H(vn) = H(v) and (H(vn); vn] ∩ (H(v); v] = ∅. In this case we have
H(v2n) = H(v). If (H(v2n); v2n] ∩ (H(v); v] 6= ∅, then similar to Case 2. it is easy
to check that O(v, f) and O(v2n, f) are companionate orbits. If (H(v2n); v2n] ∩
(H(v); v] = ∅, then (H(v2n); v2n]∩ (H(vn); vn] 6= ∅, and similar to Case 1. it is easy
to check O(vn, f) and O(v2n, f) are companionate orbits. But both still contradict
Claim 1. Therefore, we have Claim 2.

Claim 3. Let v ∈ V4 with period m. Then f i([H(v); v]) = [Hf i(v); f i(v)] for
i = 1, 2, 3, . . ., fm([H(v); v]) = [H(v); v] and

[Hfn(v); fn(v)] ∩ [H(v); v] = ∅ for each n ∈ {1, . . . ,m− 1}.

The proof of Claim 3 is analogous to that of Claim 2, and is omitted.

Claim 4. For any v, y ∈W ,

(4.7) (v;H(v)] ∩W = ∅,

and

(4.8) H(y) 6= H(v), if y 6= v.

Proof of Claim 4. Let Y0 = V1 ∪ V2 ∪ V7 ∪ V91, Y1 = Y0 ∪ V31 ∪ V4 ∪ V82 and
Yi = f−1(Yi−1) ∩W (i = 2, 3, 4, . . .). Then

(4.9) f(Yj+1) ⊂ Yj ⊂ Yj+1, for j = 0, 1, 2, . . . ,

and

(4.10)
∞
⋃

j=0

Yj = W.

If {v, y} ⊂ Y0, then from Step 1 of the definition of H one has that (4.7) and
(4.8) hold.

If v ∈ V31 ∪ V4 ∪ V82 and y ∈ Y1, then, by Claim 1−3, it is easy to check that
(4.7) and (4.8) hold.

We now assume that (4.7) and (4.8) hold for all {v, y} ⊂ Yn, where n ≥ 1. If (4.7)
does not hold for some v ∈ Yn+1, then there is a w ∈ (v;H(v)]∩W . Since f |[v,H(v)]

is monotonic, f(w) ∈ [f(v);Hf(v)] ∩W . This with (f(v);Hf(v)] ∩W = ∅ implies
f(w) = f(v), which leads to f([w; v]) = {f(v)}. If there exists a minimal integer
k ≥ 0 such that fk(f(v)) ∈ (w; v), we put z = fk+1(v). If O(f(v), f) ∩ (w; v) = ∅,
we put z = w. Then O(z, f) and O(v, f) will be companionate orbits contained in
W . But this contradicts Claim 1. Thus (4.7) still holds for all v ∈ Yn+1.
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If (4.8) does not hold for some v, y ∈ Yn+1, i.e. there exist y and v in Yn+1 with
y 6= v such that H(y) = H(v), then Hf(y) = fH(y) = fH(v) = Hf(v). Since
{f(y), f(v)} ⊂ Yn, by the assumption, f(y) = f(v). Noting that it has been proved
that (v;H(v)]∩W = ∅ and (y;H(y)]∩W = ∅, one has (v; y)∩W = ∅. Thus O(v, f)
and O(y, f) are companionate orbits. But this contradicts Claim 1. Hence (4.8)
also holds for all v, y ∈ Yn+1.

By induction, (4.7) and (4.8) hold for all v, y ∈ W . Claim 4 is proven.

Let V = H(W ). As a direct corollary of Claim 4, one has

Claim 5. H : W → I is an order-preserving injection. Thus f |V and f |W have
the same pattern as ξ.

By Claim 1, f |V has no companionate orbits, and hence the condition (C.2)
in Theorem 4.12 holds. From the step 2 (resp. step 3, the case that n = 1 and
v ∈ V82) of the definition of H it is easy to see that the condition (C.3) (resp. (C.4))
in Theorem 4.12 holds. Hence, by Theorem 4.12, we have ψ ⇒ ξ. The proof of
theorem is completed. �

Theorem 4.15. Let X = {x1 < x2 < · · · < xn} be a finite subset of R, n ≥ 3,
ψ : X → X be a cyclic permutation, and ξ be the linear extension of ψ. If n is odd,
or n is even but O(x1, ψ) and O(ψn/2(x1), ψ) are not companionate orbits, then
ψ ⇒ ξ.

Proof. Take f = ξ, and V = [X ] (= [x1, xn]). Then the conditions (C.1) and (C.4)
in Theorem 4.12 hold. From the conditions of Theorem 5.15 it is easy to check that
there exists a constant number c > 1 such that for any i ∈ {2, 3, · · · , n}, k ≥ 1,
and any {y, w} ⊂ [xi−1, xi], if {fk(y), fk(w)} ⊂ [xi−1, xi] then |fk(y) − fk(w)| ≥
c · |y − w|. This implies that the conditions (C.2) and (C.3) also hold. Hence, by
Theorem 4.12 we obtain Theorem 4.15. �

5. Periodic and non-periodic minimal patterns

In Section 4 we give some general results on conditions under which one pattern
can force another. It is nature to ask whether one can weaken the condition when
a pattern has some special form? In this section we study the periodic and non-
periodic minimal patterns.

5.1. Periodic patterns. It is well known that for any η and θ ∈ C with η 6= θ,
η forces θ if and only if the linear extension of η has a periodic orbit of pattern θ
(see [1, 2, 10, 23]). The following Theorem 5.2 is a generalization of this result. To
prove Theorem 5.2, one need the following lemma.

Lemma 5.1. Let I = [a, b], f ∈ C0(I), θ ∈ Cn (n ≥ 1) and S ⊃ {a, b} be a
nonempty closed invariant set of f . Suppose f is monotonic on every connected
component of I − S and f |S has no periodic orbit of pattern θ. If f has a periodic
orbit W = {w1 < w2 < . . . < wn} of pattern θ in an even state, then f has a
periodic orbit V = {v1 < v2 < . . . < vn} of pattern θ in an odd state such that
vn > wn and

(5.1) O(x, f) 6⊂ [a,wn), for any x ∈ ∪ni=1[wi; vi],

(5.2) [wi; vi] ∩ [wj ; vj ] = ∅, for 1 ≤ i < j ≤ n.
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Proof. Let w = wn and

(5.3) X0 = {x ∈ [w, b] : fn(x) ≥ w}.

Then X0 is closed. Take ε > 0 such that [w − 3ε, w + 3ε] ⊂ [wn−1, b] and

(5.4)

n−1
⋃

i=1

f i([w − ε, w + ε]) ⊂ [a,w − ε]− S

Then fn|[w,w+ε] is increasing sinceO(w, f) is in an even state. Thus fn([w,w+ε]) ⊂
[w, b], and hence [w,w + ε] ⊂ X0.

Let X be the connected component of X0 containing [w,w + ε]. Then there is
z ∈ [w + ε, b] such that X = [w, z]. Obviously, one has z = b ∈ S or fn(z) = w.
We claim that the following two equations hold:

(5.5)
n−1
⋃

i=1

f i(X) ⊂ [a,w − ε].

(5.6) f i(X) ∩ f j(X) = ∅, for all 0 ≤ i < j < n.

In fact, if (5.5) does not hold, then there will be x ∈ X and j ∈ Zn−1 such
that f j(x) = w − ε. This implies fn(x) = fn−j(w − ε) ∈ [a,w − ε], which is a
contradiction to (5.3). Similarly, if (5.6) does not hold, then there will be x, y ∈ X
and i, j ∈ {0, 1, . . . , n − 1} with i < j such that f i(x) = f j(y). This implies
fn(y) = fn−j(f j(y)) = fn−j(f i(x)) = fn−j+i(x) ∈ [a,w − ε], which is also a
contradiction to (5.3). Thus (5.5) and (5.6) must hold.

Let Y = X ∩ Pn(f). Then Y is closed and w ∈ Y . Let v = maxY and
O(v, f) = V = {v1 < v2 < . . . < vn}. It follows from (5.5) that v = vn and

(5.7) fn(x) 6= x for all x ∈ (v, z].

By (5.6) one has (5.2). Hence V and W have the same pattern as θ. Since f |S has
no periodic orbit of pattern θ, V ∩ S = ∅.

We now prove that V is in an odd state. In fact, if V is in an even state, putting

T = {x ∈ [v, z] : fn(x) ∈ S},

then T is closed and T ⊂ (v, z] ⊂ X . If T = ∅, then z < b and there exists
δ ∈ (0, b−z] such that fn([v, z+δ])∩S = ∅, which implies ∪n−1

i=0 f
i([v, z+δ])∩S = ∅.

From this it follows that fn|[v,z+δ] is increasing, fn([v, z + δ]) ⊂ [v, b] ⊂ [w, b] and
hence [w, z + δ] ⊂ X . But this contradicts with X = [w, z]. If T 6= ∅, writing
t = minT and b1 = min(S ∩ [v, b]), then b1 ≥ t > v. Since fn([v, t)) ∩ S = ∅, one
has ∪n−1

i=0 f
i([v, t)) ∩ S = ∅. Thus fn|[v,t] is increasing and fn(t) = b1. Noting f |S

has no periodic orbit of pattern θ, by (5.6) one has b1 > t. This with (5.7) yields
fn(z) > z, which still contradicts with that z = b or fn(z) = w.

Therefore, V must be in an odd state and hence v > w. Since

n
⋃

i=1

[wi; vi] ⊂
n−1
⋃

j=0

f j([w, v]) ⊂
n−1
⋃

j=0

f j(X) ⊂
n−1
⋃

j=0

f j(X0),

by (5.3) one can obtain (5.1). �
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Theorem 5.2. Let (X,ψ) be a compact line system, and θ ∈ C be a pattern of
periodic orbit. Then ψ ⇒ θ if and only if there exists a monotonic extension of ψ
which has a periodic orbit of pattern θ.

Proof. It is enough to show the sufficiency. If ψ itself has a periodic orbit of pattern
θ, then one has ψ ⇒ θ immediately. Now assume that ψ has no periodic orbit of
pattern θ, but there is a monotonic extension f of ψ which has a periodic orbit W
of pattern θ. Then, by Lemma 5.1, f has a periodic orbit V of pattern θ in an odd
state. Evidently, f with V satisfies the conditions (C.1)−(C.4) in Theorem 4.12.
Thus one has ψ ⇒ θ. �

5.2. Non-periodic minimal patterns. Now we study the non-periodic minimal
patterns. Note that even if (X,ψ) ∈ Ψ is minimal, not every element in [(X,ψ)]
is minimal. And generally we do not have a similar theorem like Theorem 5.2 for
a minimal pattern. But if we use the definition by Bobok [13], we can say more.
Firstly let’s recall some definitions.

Let (X,ψ) ∈ Ψ. Say a system (X,ψ) is minimal if it is compact and every point
in X has a dense orbit. It is easy to see that a compact system (X,ψ) is minimal if
and only if it has no proper nonempty closed invariant subset. A point x is said to
be minimal if its orbit closure is a minimal system. It is well known that a point x
is minimal if and only if its recurrent time is syndetic, i.e. for any neighborhood U
of x, the set N(x, U) = {n ∈ N : fn(x) ∈ U} has a bounded gap (see, for example,
[21]). Obviously, each periodic orbit is minimal. And it is easy to verify that if x
is minimal under f , then it is also minimal under fn for any n ∈ N.

Denote M = {(X,ψ) ∈ Ψ : (X,ψ) is minimal }. For (X,ψ), (Y, ξ) ∈ M, one
says that (X,ψ) is B-equivalent to (Y, ξ), denoted by (X,ψ) ≈B (Y, ξ), if the
map h : O(minX,ψ)→ O(min Y, ξ) defined by h(ψn(minX)) = ξn(minY ) for all
n ≥ 0 is an order-preserving bijection. For (X,ψ) ∈M, write

[(X,ψ)]B = {(Y, ξ) ∈ M : (Y, ξ) ≈B (X,ψ)}.

Lemma 5.3. Let (X, f) and (Y, g) be compact line systems. Suppose that (X, f)
is minimal but not periodic, and x = minX. If there exists y ∈ Y such that
the map h : O(x, f) → O(y, g) defined by h(fn(x)) = gn(y) for all n ∈ Z+ is
an order-preserving bijection, then there exists a minimal set Y ′ of g such that
(X, f) ≈B (Y ′, g|Y ′).

Proof. Let y = h(x). Since (X, f) is minimal but not periodic, there is some strictly
decreasing sequence {fni(x)}∞i=1 such that x = limi→∞ fni(x). For each n ∈ N,
denote fn(x) and gn(y) by xn and yn respectively. Since h is order-preserving,
{yni
}∞i=1 is also strictly decreasing and hence converges to some point y′ ∈ Y = Y .

Let Y ′ = O(y′, g). Define h′ : O(x, f) → O(y′, g) by h′(fn(x)) = gn(y′) for any
n ∈ N.

Firstly, we show O(y′, g) is infinite. Let k, j, n ∈ N such that fk(x) < fn(x) <
f j(x). By continuity of fn, there exists an i0 ∈ N such that fk(x) < fn(xni

) <
f j(x) for any i ≥ i0. Since h is order-preserving onO(x, f), gk(y) < gn(yni

) < gj(y)
for any i ≥ i0. Letting i tend to ∞, one has gn(y′) ∈ [gk(y), gj(y)]. From this it is
easy to see that O(y′, g) is infinite.
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Consider any j, k ∈ N. If fk(x) < f j(x), then, since f is continuous, there exists
an i0 ∈ N such that fk(xni

) < f j(xni
) for any i ≥ i0. But h is order-preserving

on O(x, f), hence gk(yni
) < gj(yni

) for any i ≥ i0. Taking limit, one has gk(y′) ≤
gj(y′). Since O(y′, g) is infinite, one get gk(y′) < gj(y′), i.e. h′(fk(x)) < h′(f j(x)).
This means that h′ is order-preserving, and it follows from x = min(O(x, f)) that
y′ = min(O(y′, g)). Thus y′ = minY ′.

Now we show that y′ is a minimal point. It is well known that a point is minimal
if and only if the sequence of the times at which this point returns to any given
neighborhood is syndetic, i.e. has a bounded gap. So it suffices to show that for
any ε > 0, the set N(y′, [y′, y′ + ε)) ≡ {k ∈ N : gk(y′) ∈ [y′, y′ + ε)} is syndetic.
Since y′ = lim i→∞ yni

, there is some j ∈ N such that ynj
= gnj (y) ∈ [y′, y′ +

ε). Now consider [x, xnj
). For any k ∈ N(x, [x, xnj

)), one has fk(x) ∈ [x, xnj
).

Similar to the analysis above, one can show gk(y′) ∈ [y′, ynj
) ⊂ [y′, y′ + ε). That

means N(x, [x, xnj
)) ⊂ N(y′, [y′, y′+ε)). As x is minimal, N(x, [x, xnj

)) and hence
N(y′, [y′, y′+ε)) is syndetic. So y′ is minimal and (Y ′, g|Y ′) is a minimal system. �

Definition 5.4. Let (W,ϕ) and (X,ψ) be line systems. Suppose that (X,ψ)
is minimal but not periodic. We say that [(W,ϕ)] forces [(X,ψ)]B and write
[(W,ϕ)]⇒ [(X,ψ)]B if any interval map exhibiting (W,ϕ) has a minimal set which
is B-equivalent to (X,ψ).

Theorem 5.5. Let (W,ϕ) and (X,ψ) be line systems. Suppose that (X,ψ) is
minimal but not periodic, x = minX, X ′ = O(x, ψ), and ψ′ = ψ|X′ : X ′ → X ′ . If
[(W,ϕ)]⇒ [(X ′, ψ′)], then [(W,ϕ)]⇒ [(X,ψ)]B .

Proof. Let g be an interval map which exhibits (W,ϕ). Then g exhibits (X ′, ψ′)
since [(W,ϕ)] ⇒ [(X ′, ψ′)]. Thus there exist an invariant set Y0 of g and an order-
preserving bijection h : X ′ → Y0 such that hψ′ = gh. Let y = h(x) and Y0 =
O(y, g). By Lemma 5.3, there exists a minimal set Y ′ of g such that (X, f) ≈B
(Y ′, g|Y ′). This means that [(W,ϕ)]⇒ [(X,ψ)]B . �

For any (X,ψ) ∈ Ψ and any x ∈ X , one has [(X,ψ)] ⇒ [(O(x, ψ), ψ|O(x,ψ))] .
Hence, from Theorem 5.5 we obtain

Corollary 5.6. Let (W,ϕ) and (X,ψ) be line systems. Suppose that (X,ψ) is
minimal but not periodic. If [(W,ϕ)]⇒ [(X,ψ)], then [(W,ϕ)]⇒ [(X,ψ)]B .

Lemma 5.7. Let (X,ψ) be a minimal line system but not periodic, and x ∈ X.
Then (O(x, ψ), ψ|O(x,ψ)) has no companionate orbits.

Proof. Write xn = ψn(x) for all n ∈ Z+. If there exist n ∈ Z+ and k ∈ N such
that O(xn, ψ) and O(xn+k, ψ) are a pair of companionate orbits, then, by (ii) of
Definition 4.13, (xn, xn+k, xn+2k, xn+3k, · · · ) is a strictly monotonic sequence, and
xn is a minimal point of neither ψk nor ψ. But this will lead to a contradiction.
Thus Lemma 5.7 is true. �

Theorem 5.8. Let (W,ϕ) be a compact line system, and (X,ψ) be a minimal line
system but not periodic. If there exists a monotonic extension f of (W,ϕ) exhibiting
(X,ψ), then [(W,ϕ)]⇒ [(X,ψ)]B.

Proof. Let x = minX, X ′ = O(x, ψ) , and ψ′ = ψ|X′ : X ′ → X ′. Then f also
exhibits (X ′, ψ′) . By Lemma 5.7, (X ′, ψ′) has no companionate orbits. It follows
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from Theorem 4.14 that [(W,ϕ)]⇒ [(X ′, ψ′)], which with Theorem 5.5 implies that
[(W,ϕ)]⇒ [(X,ψ)]B. �

6. Fissions of periodic orbits

In this section, as applications of the results built in Section 4, we discuss a kind
of invariant sets, which can be obtained by repeatedly 2-fissioning periodic orbits.
Before that, we give a generalization of Proposition 3.11.

6.1. A generalization of Proposition 3.11.

Definition 6.1. Let θ ∈ Cn, n ≥ 2 andX be a nonempty subset of R. A continuous
map ϕ : X → X is said to be θ-separable if there exist open intervals J1 < J2 <
. . . < Jn such that X ⊂

⋃n
i=1 Jn and ϕ(X ∩ Jk) ⊂ X ∩ Jθ(k) for k = 1, 2, . . . , n.

Let f ∈ C0(I), x ∈ I = [a, b] and θ ∈ Cn. For m ≥ n ≥ 2,Om(x, f) = {f i(x) :
i = 0, 1, . . . ,m} is said to be θ-separable if there exist intervals J1 < J2 < . . . <
Jn such that Om(x, f) ⊂ ∪ni=1Ji and f(Om−1(x, f) ∩ Jk) ⊂ Om(x, f) ∩ Jθ(k) for
k = 1, . . . , n.

Obviously, θ itself is θ-separable. It is easy to see that every doubling of θ is
θ-separable.

Proposition 6.2. Let θ ∈ Cn, n ≥ 2, and (X,ψ) ∈ Ψ. If ψ is θ-separable and X
is compact, then ψ ⇒ θ.

Proof. Consider any f ∈ C0(I). Assume f has an invariant set S with the pattern
of ψ. Since X is compact, by Definitions 4.1 and 6.1 it is easy to verify that there
exist closed intervals J1 < J2 < . . . < Jn such that ∪ni=1∂Ji ⊂ S ⊂ ∪ni=1Ji and
f(S ∩ Ji) ⊂ S ∩ Jθ(i) (i = 1, . . . , n). Let g be a normal reduction of f relative to

S. Then g(Ji) ⊂ Jθ(i), (i = 1, . . . , n). Thus there exists x ∈ J1 ∩ Pn(g) such that
O(x, f) = O(x, g) has the pattern θ. This implies that ψ ⇒ θ. �

The following theorem with Proposition 6.2 is a generalization of Proposition
3.11.

Theorem 6.3. Let (X,ψ), (Y, ξ) ∈ Ψ and θ ∈ C. Suppose ψ is θ-separable and
there exists y ∈ Y ∩{inf Y, supY } such that O(y, ξ) is not θ-separable. Then θ ⇒ ξ
if and only if ψ ⇒ ξ.

Proof. By Proposition 6.2, we need only to verify the sufficiency. Without loss of
generality, we may assume y = inf Y ∈ Y . Let n ≥ 2 be the period of θ. Suppose
f ∈ C0(I) has a periodic orbit W = {w1 < w2 < . . . < wn} of pattern θ. Now
we show that f has an invariant set with the pattern of ξ. Since O(y, ξ) is not θ-
separable, there exists m ≥ 2n such that Om(y, ξ) is not θ-separable. Let g ∈ C0(I)
be defined by

g(x) = f(max{w1,min{wn, x}}), for any x ∈ I.

For any r > 0, let

B(g, r) = {ϕ ∈ C0(I) : |ϕ(x) − g(x)| ≤ r for any x ∈ I},

and

B(W, r) = {x ∈ I : x ≤ w1, or x ≥ wn, or |x− wi| ≤ r for some i ∈ Zn}.
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By continuity, there exist ε ∈ (0, min{wi−wi−1 : i = 2, 3, . . . , n}/3] and δ ∈ (0, ε/5]
such that Om+n(z, ϕ) is θ-separable for any ϕ ∈ B(g, ε) and any z ∈ B(W, ε), and
On(u, ζ) ∩ [w1 − ε, w1 + ε] 6= ∅ for any ζ ∈ B(g, 2δ) and any u ∈ B(W, 2δ). Noting
ψ is θ-separable, we can construct a map η ∈ B(g, 2δ) such that η(B(W, , δ)) ⊂
B(W, δ), η|(I−B(W,2δ)) = g|(I−B(W,2δ)), and η|B(W,δ) has an invariant set with the
pattern of ψ. Since ψ ⇒ ξ, η has an invariant set V with the pattern of ξ. Let
v = min V . Then Om(v, η) is not θ-separable. Thus v > w1 + ε, and hence
V ∩B(W, 2δ) = ∅. This implies η|V = g|V = f |V , and hence f has an invariant set
with the pattern of ξ. �

6.2. Fissions of periodic orbits.

Definition 6.4. Let I = [a, b] and f ∈ C0(I). SupposeW = {w1 < w2 < . . . < wn}
and V = {v1 < v2 < . . . < v2n} are periodic orbits of f with pattern γ and η
respectively. V (or f |V ) is called a 2-fission of W (or f |W ) if the pattern η is a
doubling of γ and wi ∈ (v2i−1, v2i) for all i ∈ Zn.

v1 v2 v3 v4 v5 v6 v2n−1 v2n

w1 w2 w3 wn· · · · · ·

Figure 5

Lemma 6.5. Let I = [a, b], f ∈ C0(I) and W = {w1 < w2 < . . . < wn} be a
periodic orbit of f . Suppose one of the following two conditions holds:

(i) There exists z ∈ I such that fn(z) < wn < z < f2n(z), and f2n([wn, z]) ⊂
[wn, b].

(ii) W is in an odd state under f and there exists a nonempty closed invariant set
S of f such that W ⊂ L(S)−S and f is monotonic on every connected component
of L(S)− S.

Then there exists a 2-fission V = {v1 < v2 < . . . < v2n} of W such that

(6.1) O(x, f) 6⊂ (w1, wn) for any x ∈
n
⋃

i=1

[v2i−1, v2i].

Proof. (1) We first assume the condition (i) holds. Let Y = {x ∈ [z, b] : f2n(x) =
x}. Then Y is nonempty and closed, since f2n(z) ≥ z and f2n(b) ≤ b. Let
v = minY and w = wn. Then

(6.2) f2n([z, v]) ⊂ [z, b] and f2n([w, v]) ⊂ [w, b].

Claim. For any i ∈ Z2n−1, f
i(v) < w.

Proof of Claim. If f i(v) ≥ w for some i ∈ Z2n−1−{n}, then it follows from f i(w) <
w that there exists y ∈ (w, v] such that f i(y) = w and f2n(y) = f2n−i(w) < w,
which contradicts with (6.2). If fn(v) ≥ w, then it follows from fn(z) < w that
there exists y ∈ (z, v] satisfying fn(y) = w and f2n(y) = fn(w) = w < z, which
also contradicts (6.2). Thus Claim holds.

If the periodic orbit O(v, f) is not a 2-fission of W , then there exist i and j ∈ Z2n

with i 6= j such that f i(v) ∈ (f j(w); f j(v)]. Thus there is y ∈ (w, v] such that
f j(y) = f i(v). By Claim, we have f2n(y) = f2n−j+i(v) < w. But this contradicts
(6.2). Hence O(v, f) must be a 2-fission of W . Particularly, the period of O(v, f)
must be 2n.
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Suppose V = {v1 < v2 < . . . < v2n} = O(v, f). Then v = v2n. For any
j ∈ Z2n and any x ∈ [f j(w); f j(v)], there exists y ∈ [w, v] such that f j(y) = x and
f2n−j(x) = f2n(y) ∈ [w, b]. Thus (6.1) holds.

(2) We now assume that the condition (ii) holds. Suppose (yn, zn) is the con-
nected component of L(S)− S containing w(= wn). let

X = {x ∈ (yn, zn) : f i(x) /∈ S for all i ∈ Z2n}.

Then X is an open set and w ∈ X ⊂ (yn, zn). Let X0 be the connected component
of X containing w. Let z = supX0. For every i ∈ Z2n, since f i([w, z)) is in
a connected component of L(S) − S, f |fi([w,z)) is monotonic. Noting W is in
an odd state, we see that fn|[w,z] is decreasing. Since f(S) ⊂ S, we must have

yn ≤ fn(z) < w < z ≤ zn = f2n(z) and f2n([w, z]) = [w, zn] ⊂ [w, b]. Hence the
condition (i) holds. The proof is completed. �

Definition 6.6. Let (X, ξ) ∈ Ψ, X0 be a periodic orbit of ξ with period m ≥ 1,
ξ0 = ξ|X0 and n ∈ N.

(1) ξ is called a (1, 2, 4, . . . , 2n)-fission of ξ0 if there exist periodic orbits X0,
X1, . . ., Xn of ξ such that X =

⋃n
i=0Xi and

(i) for every i ∈ Zn, the period of Xi is 2im, and ξ|Xi
is a 2-fission of ξ|Xi−1 ;

(ii) If n ≥ 2, then [x; ξ2
i−1m(x)] ∩ (

⋃i−2
j=0Xj) = ∅ for any i ∈ {2, . . . , n} and

any x ∈ Xi.
(2) ξ is called a 2∞-fission of ξ0 if there exist periodic orbits X0, X1, X2, . . . of

ξ such that X =
⋃∞
i=0Xi and for any i ∈ N, ξ|⋃ i

j=0Xj
is a (1, 2, 4, . . . , 2i)-fission of

ξ.

Example 6.7. Let X = Z7, X0 = {3}, X1 = {2, 6}, X2 = {1, 4, 5, 7}. Define
ξ : X → X by ξ(3) = 3, ξ(2) = 6, ξ(6) = 2, ξ(1) = 5, ξ(4) = 7, ξ(5) = 4, ξ(7) = 1
(See Figure 6). Then ξ|Xi

is a 2-fission of ξ|Xi−1(i = 1, 2). But ξ is not a (1, 2, 4)-
fission of ξ|X0 . From this example we see that the condition (i) in Definition 6.6
does not imply the condition (ii).

1 2 3 4 5 6 7

Figure 6

Proposition 6.8. Let ξ : X → X be a 2∞-fission of ξ0 and X0, X1, X2, . . . be as
in Definition 6.6. Suppose the pattern of ξ0 is θ ∈ Cm m ≥ 1. Then

(i) ξ|(X−
⋃n−1

i=0 Xi)
is also a 2∞-fission of ξ|Xn

, (n = 1, 2, . . .);

(ii) ξ is θ-separable;
(iii) every point in X is an isolated point of X.

Proof. By Definitions 6.6 and 6.1, (i) and (ii) are obvious. We now check (iii). By
(ii), we may consider only the case m = 1. Suppose the unique point in X0 is x0.
By (i), it suffices to show that x0 is an isolated point of X . Suppose X1 = {y1 <
y2}, X2 = {v1 < v2 < v3 < v4}. Then v1 < y1 < v2 < x0 < v3 < y2 < v4 and
ξ(v2) ∈ {v3, v4}. If ξ(v2) = v4, then ξ(X∩ [y1, x0)) ⊂ [y2, supX). By the continuity
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of ξ at x0, we have sup(X ∩ [y1, x0)) < x0, and hence inf(X ∩ (x0, y2]) > x0. Thus
x0 is an isolated point of X . If ξ(v2) = v3, then ξ(v3) = v1. By an analogous
argument, x0 is still an isolated point of X . �

For any θ ∈ C, let D0(θ) = {θ}. For k = 1, 2, 3, . . ., let

Dk(θ) = {η ∈ C : there is ξ ∈ Dk−1(θ) such that η is a doubling of ξ},

and let D∗
k(θ) =

⋃k
i=0 Di(θ). Write D∞(θ) =

⋃∞
i=1 Di(θ). Let C(ψ) = {θ ∈ C :

there is some periodic orbit of ψ equivalent to θ}, where (X,ψ) ∈ Ψ.

Theorem 6.9. Let X ⊂ R be compact, (X,ψ) ∈ Ψ and θ ∈ C.
(i) Suppose C(ψ) ∩D∗

n−1(θ) = ∅, for some n ∈ N. Then ψ ⇒ θ if and only if
there exists a (1, 2, 4, . . . , 2n)-fission ξn of θ such that ψ ⇒ ξn.

(ii) Suppose C(ψ) ∩ D∞(θ) = ∅. Then ψ ⇒ θ if and only if there exists a
2∞-fission ξ of θ such that ψ ⇒ ξ.

Proof. The sufficiency is evident. We now prove the necessity. Suppose θ ∈ Cm for
some m ≥ 1. Write mi = 2im. Let I = [a, b] = L[X ], U = I −X and let f ∈ C0(I)
be the linear extension of ψ. Assume ψ ⇒ θ. Then f has a periodic orbit W0 of
pattern θ. Since C(ψ) ∩D0(θ) = ∅, W0 ⊂ U . By Lemma 5.1, we may assume W0

is in an odd state. By Lemma 6.5, f has a 2-fission V1 of W0.

We now assume that, for some k ≥ 1, f has periodic orbits W0,W1, . . . ,Wk−1

and Vk satisfying the following four conditions:

(a) f |W0 has the same pattern as θ;

(b) for 1 ≤ i ≤ k − 1, f |Wi
is a 2-fission of f |Wi−1 , and f |Vk

is a 2-fission of
f |Wk−1

;

(c) f |(W0∪W1∪...∪Wk−1∪Vk) is a (1, 2, 4, . . . , 2k)-fission of f |W0 ;

(d) for 0 ≤ i ≤ k − 1, Wi ⊂ U and f |Wi
is in an odd state.

Since C(ψ) ∩ Dk(θ) = ∅, we have Vk ⊂ U . Let Vk = {vk1 < vk2 < vk3 <
. . . < vkmk

}. If f |Vk
is in an even state, then by Lemma 5.1, f has a periodic orbit

Wk = {wk1 < wk2 < . . . < wkmk
} ⊂ U satisfying the following two conditions:

(e) f |Wk
is in an odd state and has the same pattern as f |Vk

;

(f) O(x, f) 6⊂ [a, vkmk
) for any x ∈

⋃mk

i=1[vki;wki], and [vki, wki] ∩ [vkj , wkj ] = ∅
for 1 ≤ i < j ≤ mk.

It follows from (a)−(f) that f |Wk
is also a 2-fission of f |Wk−1

, (∪
mk/2
j=1 [wk,2j−1, wk,2j ])

∩(∪k−2
i=0Wi) = ∅, and f |∪k

i=0Wi
is also a (1, 2, 4, . . . , 2k)-fission of f |W0 . If f |Vk

is in

an odd state, then we put Wk = Vk and wkj = vkj , j = 1, 2, . . . ,mk. By Lemma
6.5, f has a periodic orbit Vk+1 = {vk+1,1 < vk+1,2 < . . . < vk+1,mk+1

} satisfying

(g) f |Vk+1
is a 2-fission of f |Wk

;

(h) O(x, f) 6⊂ (wk1, wkmk
) for any x ∈

⋃mk

i=1[vk+1,2i−1, vk+1,2i].

From (a)−(h) we see that (
⋃mk

i=1[vk+1,2i−1, vk+1,2i])
⋂

(
⋃k−1
j=0 Wj) = ∅, and

f |(W0∪W1∪...∪Wk∪Vk+1) is a (1, 2, 4, . . . , 2k+1)-fission of f |W0 .

By induction, we obtain the following

Claim. (I) If C(ψ) ∩D∗
n−1(θ) = ∅, then f has an invariant set Yn = W0 ∪W1 ∪

. . . ∪Wn−1 ∪ Vn such that f |Yn
is a (1, 2, 4, . . . , 2n)-fission of f |W0 ;
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(II) If C(ψ) ∩D∞(θ) = ∅, then f has an invariant set Y = ∪∞j=0Wj such that

f |Y is a 2∞-fission of f |W0 .

By this claim and Theorem 4.14 one completes the proof of Theorem 6.9. �

7. Entropies of patterns of compact line systems

Firstly recall the definition of the topological entropy. Let (X, f) be a compact
system. For ε > 0 and n ∈ N, a subset W of X is called an (f, ε, n)- spanning

set of X if for any x ∈ X there is y ∈ W such that d(f ix, f iy) < ε for 1 ≤ i ≤ n.
Let Span(f, ε, n) denote the smallest cardinality of any (f, ε, n)-spanning set of X .
Then the topological entropy of (X, f) is defined by

h(X, f) = lim
ε→0

lim sup
n→∞

1

n
logSpan(f, ε, n).

See [1, 9, 11] etc. for different definitions and more information about the topolog-
ical entropy.

Definition 7.1. Let (X,ψ) be a line system, and I = L(X). Define

h∗(X,ψ) = inf{h(I, f) : f ∈ C0(I) and f |X = ψ},

h∗[(X,ψ)] = inf{h∗(Y, ξ) : (Y, ξ) ∈ [(X,ψ)]}.

One says that h∗[(X,ψ)] is the topological entropy of the pattern [(X,ψ)].

When (X,ψ) is a periodic orbit, h∗[(X,ψ)] = h∗(X,ψ) is extensively studied by
lots of authors and there are lots of interesting results (for example, see [1, 7, 8, 9,
11]). It is shown that, for any periodic orbit (X,ψ), h∗(X,ψ) is the entropy of its
linear extension. The following lemma is also well known, see [1] .

Lemma 7.2. For any interval map f : I → I, it holds that

h(I, f) = sup{h∗(P, f |P ) : P is a periodic orbit of f }.

For an interval map, the topological entropy is also closely related to its minimal
subsets, which is discussed in [14]. We now give a theorem, which is a generalization
of the corresponding results on patterns of periodic orbit.

Theorem 7.3. Let (X,ψ) be a compact line system, I = L(X), and f be a mono-
tonic extension of ψ. Then h∗[(X,ψ)] = h∗(X,ψ) = h(I, f).

Proof. It follows from Definition 7.1 that h∗[(X,ψ)] ≤ h∗(X,ψ) ≤ h(I, f). Hence,
it suffices to show h∗[(X,ψ)] ≥ h(I, f). Consider any given real number r < h(I, f)
and any interval map g : J → J exhibiting (X,ψ). By Lemma 7.2, there is
a periodic orbit P of f such that h∗(P, f |P ) > r. By Theorem 5.2, g exhibits
(P, f |P ), and hence, by Lemma 7.2 again, one has h(J, g) ≥ h∗(P, f |P ) > r. This
means that h∗[(X,ψ)] ≥ h(I, f). �

From Theorem 7.3 we obtain the following corollary at once.

Corollary 7.4. (1) Let (X,ψ) be a compact line system, I = L(X), and f and g
be two monotonic extensions of ψ. Then h(I, f) = h(I, g).

(2) Let (X,ψ) and (Y, ξ) be two compact line systems which have the same
pattern. Then h∗(X,ψ) = h∗(Y, ξ).
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