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ABSTRACT. It is shown that any non-PI minimal system is Li-Yorke sensitive. Con-
sequently, any minimal system with nontrivial weakly mixing factor (such a system is
non-PI) is Li-Yorke sensitive, which answers affirmatively an open question by Akin and
Kolyada in [AK03].

1. INTRODUCTION

1.1. Topological dynamics.
First we recall some basic notions in topological dynamics. A topological dynamical

system (X ,T ) is a compact metric space (X ,ρ) endowed with a continuous surjective map
T : X → X . For simplicity, we only consider homeomorphisms in this paper.

Recall that (X ,T ) is transitive if for each pair of opene (i.e. non-empty and open) sub-
sets U and V , N(U,V ) = {n ∈ Z : U ∩T−nV 6= /0} is non-empty. (X ,T ) is (topologically)
weakly mixing if (X×X ,T ×T ) is transitive. A point x ∈ X is a transitive point if its orbit
Orb(x,T ) = {T nx : n ∈ Z} is dense in X . If every point of X is transitive, we say (X ,T )
is minimal. A point is minimal if its orbit closure is a minimal subsystem.

A pair (x,y) ∈ X ×X is said to be proximal if liminfn→∞ ρ(T nx,T ny) = 0, and it is
called asymptotic when limn→∞ ρ(T nx,T ny) = 0. The set of proximal pairs is denoted by
P(X ,T ) or P when the system is clear. P is a reflexive, symmetric, T -invariant relation but
in general is not transitive or closed. For x∈ X , the set P[x] = {y∈ X : (x,y)∈ P} is called
the proximal cell of x. An important result concerning the proximal cell is that for any
x ∈ X , P[x] contains a minimal point; more precisely, every minimal subset of Orb(x,T )
meets P[x] [Au88, Theorem 5.3.]. It follows immediately that if P[x] is a singleton, then
x is a minimal point and in that case x is called a distal point. A system is called a distal
system when every point is distal. A system (X ,T ) with some distal point x whose orbit
Orb(x) is dense in X is called a point-distal system. For a weakly mixing system, the
proximal cell P[x] is “big”, in the sense that it is a residual subset of X for all x ∈ X
[AK03]. In fact, for mixing systems, proximal cells can be very complicated [HSY].

For a topological dynamical system (X ,T ), a pair is said to be a Li-Yorke pair if it is
proximal but not asymptotic. x ∈ X is recurrent if there is a subsequently {ni} of Z with
ni→ ∞ such that T nix→ x. A pair (x,y) ∈ X2 \∆X is said to be a strong Li-Yorke pair if
it is proximal and is also a recurrent point of X2, where ∆X = {(x,x) : x ∈ X}. A subset
A ⊂ X is called scrambled (resp. strongly scrambled) if every pair of distinct points in

2010 Mathematics Subject Classification. Primary: 37B05; 54H20.
This research is supported by NNSF of China (11371339, 11431012, 11571335) and by the Fundamental

Research Funds for the Central Universities.

1



2 SONG SHAO AND XIANGDONG YE

A is Li-Yorke (resp. strong Li-Yorke). The system (X ,T ) is said to be Li-Yorke chaotic
(resp. strong Li-Yorke chaotic) if it contains an uncountable scrambled (resp. strongly
scrambled) subset.

Let (X ,T ) be a dynamical system. A subset K of X is uniformly recurrent if for every
ε > 0 there is an n ∈ N with d(T nx,x) < ε for all x in K. K is recurrent if every finite
subset of K is uniformly recurrent. The subset K is called uniformly proximal if for every
ε > 0 there is n ∈N with diamT nK < ε . A subset K of X is called proximal if every finite
subset of K is uniformly proximal.

A homomorphism π : (X ,T )→ (Y,S) is a continuous surjective map from X to Y such
that S ◦π = π ◦T . In this case we say that (X ,T ) an extension of (Y,S) and that (Y,S) is
a factor of (X ,T ). An extension π is determined by the corresponding closed invariant
equivalence relation Rπ = {(x1,x2) : πx1 = πx2}= (π×π)−1∆Y ⊂ X×X .

1.2. Li-Yorke sensitivity.
(X ,T ) is Li-Yorke sensitive, briefly LYS or LYSε , if there is an ε > 0 with the property

that every x ∈ X is a limit of points y ∈ X such that the pair (x,y) is proximal but not
ε-asymptotic, i.e., if

liminf
n→∞

ρ(T nx,T ny) = 0,and limsup
n→∞

ρ(T nx,T ny)> ε.

Each pair satisfying above condition is called an ε-Li-Yorke pair. A set S ⊆ X is called
an ε-scrambled set if each pair with distinct elements is an ε-Li-Yorke pair. (X ,T ) is
ε-Li-Yorke chaotic, briefly LYCε if it has an uncountable ε-scrambled subset, for some
ε > 0.

Li-Yorke Chaos [LY75] and sensitivity [Gu79, GW93] are two basic notions to describe
the complexity of a topological dynamics. The notion of Li-Yorke sensitivity, combining
the above two notions together, was introduced and studied by Akin and Kolyada [AK03].
In [AK03] the authors showed that every nontrivial weak mixing system is LYS, and they
stated five conjectures concerning LYS. Three of them were disproved in [CM06] and
[CM09]. In particular, it was proved that a minimal LYS system needs not to have a
nontrivial weak mixing factor [CM06], and that a minimal system with a nontrivial LYS
factor needs not to be LYS [CM09]. The remaining two open problems are the following:

Question 1.1. [AK03, Question 4.] Is every minimal system with a nontrivial weak mixing
factor LYS?

Question 1.2. [AK03, Question 2.] Does Li-Yorke sensitivity imply Li-Yorke chaos?

In this paper we give an affirmative answer to Question 1.1. In fact, we show the
following stronger result (for the definition of PI, see the next subsection):

Main Theorem. Let (X ,T ) be a minimal system. If (X ,T ) is not PI, then there is some
ε > 0 such that for any x ∈ X and any neighbourhood U of x, there is a subset S⊆U such
that

(1) S is uncountable and x ∈ S⊆ P[x]∩U;
(2) S is ε-scrambled;
(3) S is proximal;
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(4) S is recurrent.
In particular, (X ,T ) is ε-Li-Yorke chaotic, strongly Li-Yorke chaotic and Li-Yorke sen-

sitive.

It is known that a factor of a minimal PI system is PI (see Lemma 2.4). Using this
fact it is easy to show that every minimal system with a nontrivial weak mixing factor is
not a PI system. So a minimal system with a non-trivial weakly mixing factor is LYS,
answering Question 1.1 affirmatively. Moreover, by the Main Theorem, we have that any
non-PI system is (strongly) Li-Yorke chaotic, which was proved first in [AGHSY]. Note
that here we offer a different approach.

For more details related to Li-Yorke sensitivity, see [AK03, CM06, CM09, CM16].

1.3. On the structure of minimal systems.
Our main tool to show the Main Theorem is the structure theorem of minimal system-

s. In this subsection we state the structure theorem for minimal systems and give the
definition of a PI system. For other undefined notions, see [Au88, G76, V77].

We first recall definitions of extensions. An extension π : (X ,T )→ (Y,S) is called
proximal if Rπ ⊂ P(X ,T ). π is an equicontinuous or almost periodic extension if for
every ε > 0 there is δ > 0 such that (x,y) ∈ Rπ and ρ(x,y) < δ imply ρ(T nx,T ny) < ε ,
for every n∈Z. In the metric case an equicontinuous extension is also called an isometric
extension. The extension π is a weakly mixing extension when (Rπ ,T ×T ) as a subsystem
of the product system (X ×X ,T ×T ) is transitive. π is called a relatively incontractible
(RIC) extension if it is open and for every n ≥ 1 the minimal points are dense in the
relation

Rn
π = {(x1, . . . ,xn) ∈ Xn : π(xi) = π(x j), ∀ 1≤ i≤ j ≤ n}.

Note that R1
π = X and R2

π = Rπ . We say that a minimal system (X ,T ) is a strictly PI
system (PI means proximal-isometric) if there is an ordinal η (which is countable when
X is metrizable) and a family of systems {(Wι ,wι)}ι≤η such that

(1) W0 is the trivial system,
(2) for every ι < η there exists a homomorphism φι : Wι+1 →Wι which is either

proximal or equicontinuous (isometric when X is metrizable),
(3) for a limit ordinal ν ≤η the system Wν is the inverse limit of the systems {Wι}ι<ν ,
(4) Wη = X .

We say that (X ,T ) is a PI-system if there exists a strictly PI system X̃ and a proximal
homomorphism θ : X̃ → X .

Finally we have the structure theorem for minimal systems (see Ellis-Glasner-Shapiro
[EGS75], McMahon [Mc76], Veech [V77], and Glasner [G76]).

Theorem 1.3 (Structure theorem for minimal systems). Let (X ,T ) be a minimal system.
Then we have the following diagram:
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X X∞

π∞

��

θ

oo

Y∞

where X∞ is a proximal extension of X and a RIC weakly mixing extension of the strictly
PI-system Y∞.

The homomorphism π∞ is an isomorphism (so that X∞ = Y∞) if and only if X is a PI-
system.

Remark 1.4. If (X ,T ) is a weakly mixing minimal system, then in the structure theorem,
X = X∞ and Y∞ is trivial. Hence if a minimal system is both PI and weakly mixing, then
it is trivial.

2. PROOF OF MAIN THEOREM

In this section we will give the proofs of the main results of the paper. To this aim, we
need some basic results from the theory of minimal flows.

First recall some basic notions related to the Ellis semigroup. Given a system (X ,T )
its enveloping semigroup or Ellis semigroup E(X ,T ) is defined as the closure of the set
{T n : n ∈ Z} in XX (with its compact, usually non-metrizable, pointwise convergence
topology). Let (X ,T ),(Y,S) be systems and π : X → Y be an extension. Then there is a
unique continuous semigroup homomorphism π∗ : E(X ,T )→ E(Y,S) such that π(px) =
π∗(p)π(x) for all x ∈ X , p ∈ E(X ,T ). When there is no confusion, we usually regard that
the enveloping semigroup of X acts on Y : pπ(x) = π(px) for x ∈ X and p ∈ E(X ,T ).

For a semigroup the element u with u2 = u is called an idempotent. The well known
Ellis-Numakura theorem states that for any enveloping semigroup E the set J(E) of idem-
potents of E is not empty. An idempotent u ∈ J(E) is minimal if v ∈ J(E) and vu = v im-
plies uv = u. A point x ∈ X is minimal if and only if ux = x for some minimal idempotent
u ∈ E(X ,T ).

For n ∈ N, let T (n) = T ×T × . . .×T (n times). For a subset A⊆ Xn, let

Orb(A,T (n)) =
{(

T (n))kA : k ∈ Z
}
.

The following theorem is crucial to the proof of the Main Theorem. Note that we
assume that X and Y are metrizable.

Theorem 2.1. [SY, Lemma B.2 and Theorem B.3] Let (X ,T ) and (Y,T ) be minimal
systems and let π : X→Y be a RIC weakly mixing extension. Let y∈Y with uy = y, where
u is a minimal idempotent. Then for all n ≥ 2, any nonempty open subset U of uπ−1(y)
and any transitive point x′ = (x′1, · · · ,x′n−1) ∈ Rn−1

π with π(x′j) = y, j = 1, · · · ,n− 1, one
has that

Orb({x′}×U,T (n)) = Rn
π .
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Moreover, for each transitive point x′ = (x′1, · · · ,x′n−1) ∈ Rn−1
π with π(x′j) = y, j =

1, · · · ,n− 1, there is some residual subset D of uπ−1(y) such that if x′′ ∈ D, then
Orb((x′,x′′),T (n)) = Rn

π .

Remark 2.2. We have the following
(1) To prove Theorem 2.1 one needs the so-called Ellis trick by Glasner in [G76]. We

refer to [G05] for more discussions about weakly mixing extensions.
(2) In Theorem 2.1, when n = 2, Rn−1

π = R1
π = X , i.e. for each x ∈ X with π(x) = y

there is some residual subset D of uπ−1(y) such that if x′ ∈D, Orb((x,x′),T ×T )=
Rπ . This result is Theorems 14.27 and 14.28 in [Au88].

Corollary 2.3. Let (X ,T ) and (Y,T ) be minimal systems and let π : X → Y be a RIC
weakly mixing extension. Let y ∈ Y with uy = y, where u is a minimal idempotent. If π is
non-trivial, then uπ−1(y) is perfect, and hence it has the cardinality of the continuum.

Proof. If uπ−1(y) is not perfect, then there is some x ∈ uπ−1(y) such that {x} is relatively
open in uπ−1(y). Take n = 2 and U = {x} in Theorem 2.1, then we have

∆X = Orb({x}×{x},T ×T ) = Rπ .

Thus π is trivial, a contradiction! The proof is completed. �

The following proposition will be used in the proof of the Main Theorem.

Proposition 2.4. [EGS75, Corollary 7.4] A factor of a PI flow is PI.

Now we are ready to give the proof of the Main Theorem.

Proof of the Main Theorem. By the structure theorem for minimal systems we have the
following diagram:

X X∞

π∞

��

θ

oo

Y∞

where θ is a proximal extension, π∞ is a non-trivial weakly mixing RIC extension and Y∞

is a strictly PI-system. Let

d = max{ρ(θ(x1),θ(x2)) : (x1,x2) ∈ Rπ∞
}.

Then d > 0, since if d = 0 then Rπ∞
⊆ Rθ , which implies that X is a factor of Y∞, a

contradiction by Proposition 2.4. Put ε = 1
2d > 0.

Fix x ∈ X , an open neighbourhood U of x and choose x′1 ∈ θ−1(x). Let ux′1 = x′1
for some minimal idempotent u, and let y = π∞(x′1). Let U ′ = θ−1(U), then U ′ is a
neighborhood of x′1. We are going to construct increasing subsets Xα ⊂ uπ−1

∞ (y)∩U ′,
α < Ω such that each non-empty finite subset F of Xα is a transitive point of R|F |π∞

, where
Ω is the first uncountable ordinal number and |F | means the cardinality of F .
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Put X1 = {x′1}. By Theorem 2.1 and Corollary 2.3, there is some x′2 ∈ uπ−1
∞ (y)∩U ′

such that (x′1,x
′
2) is a transitive point of R2

π∞
. Let X2 = {x′1,x′2}.

Now assume that α < Ω is an ordinal number and Xβ has been constructed for any

β < α such that each non-empty finite subset F of Xβ is a transitive point of R|F |π∞
. If α is

a limit ordinal number then we put Xα =
⋃

β<α Xβ . It is clear that each finite non-empty

subset F of Xα is a transitive point of R|F |π∞
. Assume now α is not a limit ordinal number.

For each finite non-empty subset F of Xα−1, by Theorem 2.1 and Corollary 2.3, the set
ZF of points z ∈ uπ−1

∞ (y) such that (F,z) is transitive in R|F |+1
π∞

is residual in uπ−1
∞ (y).

Hence Z =
⋂

F ZF is also residual in uπ−1
∞ (y), where F runs over all finite non-empty

subsets of Xα−1. Choose x′α ∈ (Z \Xα−1)∩U ′ and put Xα = Xα−1∪{x′α}. It is clear that
Xα ⊂ uπ−1

∞ (y)∩U ′ and each finite non-empty subset F of Xα is a transitive point of R|F |π∞
.

Let S =
⋃

α<Ω θ(Xα). Then S ⊆U and x = θ(x′1) ∈ S. First we show that all points in
S are distinct, and hence S is uncountable. Assume the contrary that not all points in S are
distinct. This means that there are some α < β < Ω such that xα = θ(x′α) = θ(x′

β
) = xβ .

In particular,
(x′α ,x

′
β
) ∈ Rθ .

As (x′α ,x
′
β
) is a transitive point of (Rπ∞

,T ×T ), and it follows that

Rπ∞
= Orb((x′α ,x′β ),T ×T )⊆ Rθ .

Hence X is a factor of Y∞, and X is a PI flow by Proposition 2.4, a contradiction.

Now we show that S is proximal and recurrent. Let n ∈N and α1 < α2 < .. . < αn < Ω.
Let x′= (x′α1

,x′α2
, . . . ,x′αn

) and x= (xα1,xα2, . . . ,xαn), where xαi = θ(x′αi
),1≤ i≤ n. Since

the diagonal of X∞
n is contained in Rn

π∞
and x′ is the transitive point of Rn

π∞
, there are a

sequence {ni} ⊆ Z and some point z′ ∈ X∞ such that (T nix′α1
, . . . ,T nix′αn

)→ (z′, . . . ,z′) as
ni→ ∞. Since θ is continuous,

(T nixα1, . . . ,T
nixαn) = (θ(T nix′α1

), . . . ,θ(T nix′αn
))→ (θ(z′), . . . ,θ(z′)), ni→ ∞.

Thus {xα1,xα2, . . . ,xαn} is uniformly proximal.
Since x′ is the transitive point of Rn

π∞
, x′ is recurrent in the product system (Xn

∞,T
(n))

and hence its θ × . . . ,×θ -image x is also recurrent. So S is recurrent.

It is left to show that for all α < β < Ω, (xα ,xβ ) = (θ(x′α),θ(x
′
β
)) is LYSε . By

the definition of d, there is some pair (p,q) ∈ Rπ∞
such that ρ(θ(p),θ(q)) > 1

2d = ε .
Since (x′α ,x

′
β
) is the transitive point of Rπ∞

, there is a sequence {mi} ⊆ Z such that
(T mix′α ,T

mix′
β
)→ (p,q) as mi→ ∞. As θ is continuous,

lim
i

ρ(T mixα ,T mixβ ) = lim
i

ρ(θ(T mix′α),θ(T
mix′

β
)) = ρ(θ(p),θ(q))> ε.

Hence (xα ,xβ ) is LYSε . The proof is completed. �

Corollary 2.5. Any minimal system with nontrivial weakly mixing factor is Li-Yorke sen-
sitive.
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Proof. Let (X ,T ) be a minimal system with nontrivial weakly mixing factor (Y,T ). By
the Main Theorem, it remains to show that (X ,T ) is not PI. If not, then as factor of (X ,T ),
(Y,T ) is PI by Proposition 2.4. Hence (Y,T ) is both weakly mixing and PI, which means
that (Y,T ) is trivial (Remark 1.4). A contradiction! �

Remark 2.6. In this paper, we consider T : X → X as a homeomorphism for simplicity.
When T is a continuous surjective map, one can use the natural extension to get the
corresponding results. Recall that for a system (X ,T ), let (X̃ , T̃ ) be the natural extension
of (X ,T ), i.e. X̃ = {(x1,x2, . . .) ∈ ∏

∞
i=1 X : T (xi+1) = xi, i ∈ N} (as the subspace of

the product space) and T̃ (x1,x2, . . .) = (T (x1),x1,x2, . . .). It is clear that T̃ : X̃ → X̃ is a
homeomorphism and p1 : X̃ → X is an asymptotic extension, where p1 is the projection
to the first coordinate. When (X ,T ) is minimal, (X̃ , T̃ ) is minimal and p1 is almost one-
to-one [AGHSY, Corollary 5.18].

3. A QUESTION

Finally we state a question related to Question 1.2.

Question 3.1. Is a non point-distal minimal system Li-Yorke chaotic?

Since each LYS minimal system is not point-distal, an affirmative answer to Question
3.1 will also give an affirmative answer to Question 1.2 for the minimal case.

Acknowledgments: We would like to thank Dr. Jian Li for very useful suggestions.
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