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Abstract. We investigate systematically several mixing concepts via sequence
entropy both in measure-theoretical dynamical systems and in topological dy-
namical systems, and obtain some new theorems or new proofs of some known
theorems. Particularly, characterizations of rigidity and mild mixing via sequence
entropy are obtained. Moreover, we show that if the topological entropy of an open
cover is positive, then the sequence entropy of the cover with respect to any se-
quence is positive. As applications we prove that minimal topological Kolmogorov
system is strongly mixing and any transitive diagonal flow is mildly mixing.

1. Introduction

Measure-theoretical dynamical systems (MDS for short) and topological dynam-
ical systems (TDS for short) exhibit a remarkable parallelism. There are many
concepts which have counterparts in both theories, e.g., ergodicity - minimality,
discrete spectrum - equicontinuity, relatively discrete spectrum - almost periodic ex-
tension, measure-theoretical entropy - topological entropy etc. These have led to the
formulation of analogous theorems in both theories. In this paper we study several
mixing concepts using the notion of the sequence entropy both in MDS and TDS. We
will find the results in both theories are analogous, but the proofs involved are en-
tirely different and neither directly deducible from the other. Let (X,B, µ, T ) be an
invertible MDS. Ergodicity and all kinds of mixing properties are discussed by many
authors from different viewpoints. It is found that to characterize different mixing
properties using entropy concept is effective and fruitful. This study was originated
by Kushnirenko [Ku] in 1965. Let IF be the set of all infinite sequences of Z+.
Kushnirenko introduced the notion of sequence entropy along a given A ∈ IF for
a MDS and proved that an invertible MDS has discrete spectrum iff the sequence
entropy of the system with respect to any A ∈ IF is zero. Later Saleski gave a
characterization of weakly mixing and strongly mixing MDS via sequence entropy
[S]. Let PX be the set of finite measurable partitions of X. He showed that T is
weakly mixing iff supA∈IF hA

µ (T, α) = Hµ(α) for all α ∈ PX ; T is strongly mixing

iff sup{hB
µ (T, α) : B ⊆ A} = Hµ(α) for any A ∈ IF and any α ∈ PX . Hulse [Hu1]

improved some of the Saleski’s results and showed that T is weakly mixing iff there
exists A ∈ IF such that hA

µ (T, α) = Hµ(α) for any α ∈ PX ; T is strongly mixing iff

for any A ∈ IF there exists an infinite sequence B ⊆ A such that hB
µ (T, α) = Hµ(α)

for all α ∈ PX . Moreover, Hulse [Hu2] gave the characterizations of the compact and
weakly mixing extensions of MDS via conditional sequence entropy. Between weak

2000 Mathematics Subject Classification. Primary 37A25, 37B40.
Key words and phrases. Mixing, sequence entropy, sequence entropy pair.

1



2 WEN HUANG, SONG SHAO, AND XIANGDONG YE

mixing and strong mixing concepts there is an important mixing property, known as
mild mixing in ergodic theory. It is well known that an invertible MDS (X,B, µ.T )
is weakly mixing if and only if for any ergodic MDS (Y,A, ν, S) with ν(Y ) < ∞,
the product X and Y is ergodic. But if we drop the assumption that ν(Y ) < ∞,
then the property is strictly stronger than weak mixing, which is called mild mixing
by Furstenberg and Weiss [FW]. In [F2, F3] many equivalence conditions of mild
mixing were obtained. Moreover, Furstenberg and Kateznelson [FK] introduced the
relative version of the notion. The characterizations of mild mixing and mildly mix-
ing extension via sequence entropy can be found in [Z1, Z2]. For example, Zhang
[Z1] showed that T is mildly mixing iff for every A ∈ IF , there is a sequence Fn of

pairwise disjoint finite subsets of A such that for any α ∈ PX , h
{si}
µ (T, α) = Hµ(α),

where si =
∑

a∈Fi
a.

It is well known that the notion of discrete spectrum is contrary to that of weak
mixing which can be characterized as having no nontrivial factors with discrete
spectrum for an invertible MDS. Similarly, the notion of rigidity is contrary to that
of mild mixing which can be characterized as having no nontrivial rigid factors for an
invertible MDS. We have mentioned Kushnirenko’ theorem on the characterization
of discrete spectrum via sequence entropy. Now we recall that Zhang [Z1] showed
that an invertible MDS (X,B, µ, T ) is rigid iff there exists A ∈ IF such that if
{Fn} is any sequence of pairwise disjoint finite subsets of A and si =

∑
a∈Fi

a, then

h
{si}
µ (T ) = 0.
In section 3, we will give a new proof of Kushnirenko’s theorem and some proofs

of the above mentioned theorems using different approach (see Theorems 3.5, 3.6,
3.9, 3.10) and obtain characterizations of mixing and rigidity via sequence entropy
(Theorems 3.6, 3.9).

In the category of topological dynamical system, in 1974 Goodman [G] intro-
duced the notion of topological sequence entropy and studied some properties of
null systems which are defined as having zero topological sequence entropy for any
infinite sequence. It is a natural question whether we have similar characterizations
of topological mixing properties using topological sequence entropy. In [HLSY], the
first characterization of topological weak mixing was obtained using sequence en-
tropy. Namely, the authors localized the notion of sequence entropy by defining
sequence entropy pairs and proved that a system is topologically weakly mixing iff
any pair not in the diagonal is a sequence entropy pair. Moreover, they showed that
for a minimal system Kushnirenko’ statement remains true modulo an almost one
to one extension, i.e. if a minimal system is null, then it is an almost one to one
extension of a topological system with discrete spectrum. Recently, in [HY2] (see
also [GW]) the notion of topological mild mixing was introduced. A TDS (X,T )
is topologically mildly mixing if for any transitive system (Y, S), (X × Y, T × S) is
transitive. Similar to the case in ergodic theory, this property is strictly between
weak mixing and strong mixing. A characterization of topological mild mixing via
sequence entropy will be obtained in section 4 and new proofs of known theorems
are given (see Theorem 4.12, 4.13 and 4.14).
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The notion of Kolmogorov system in ergodic theory is useful and is extensively
studied. The notion of disjointness of two TDS was introduced in [F1] to show how
greatly the two systems differ from each other both in MDS and TDS. It is known
that any K-system in MDS is disjoint from zero entropy system and is strongly
mixing. Topological analogues of K-systems have been proposed: u.p.e. in [B1] and
topological K in [HY1]. In [B2], it was proved that diagonal flows (which is weaker
than u.p.e.) are disjoint from all minimal TDS with zero entropy. It is an open
question if minimal u.p.e. implies strong mixing. In the last section we show that
if the topological entropy of an open cover is positive, then the sequence entropy
of the cover with respect to any sequence is positive (a similar result in MDS was
obtained in [S] and we supply a direct proof for completeness). As applications we
prove that any minimal topological K-system is strongly mixing and any transitive
diagonal flow [B2] is mildly mixing.

2. Preliminaries

We use Z (resp. R, C and N) to denote the set of integers (resp. real numbers,
complex numbers and natural numbers) and Z+ the set of the non-negative integers.
For convenience when we speak A ∈ IF we mean it is ordered in the natural way,
i.e., A = {a1 < a2 < · · · }.

Let (X,B, µ) be a standard Borel space, µ a regular probability measure on X
and T : X → X a measure-preserving transformation. The quadruple (X,B, µ, T )
is said to be a measure-theoretical dynamical system (for short MDS) if Tµ = µ,
i.e. µ(B) = µ(T−1B) for all B ∈ B. If T is measure-preserving, bijective, and T−1

is also measure-preserving, we say (X,B, µ, T ) invertible. A MDS (X,B, µ, T ) is
ergodic if the only measurable sets A for which µ(A∆T−1A) = 0 satisfy µ(A) = 0 or
µ(A) = 1. A MDS (X,B, µ, T ) is weakly mixing if (X ×X,B × B, µ × µ, T × T ) is
ergodic. (X,B, µ, T ) is strongly mixing if limn→∞ µ(T−nA∩B) = µ(A)µ(B) for any
A,B ∈ B.

An eigenfunction for T is some non-zero function f ∈ L2(X,B, µ) = L2(µ) such
that Uf = λf for some λ ∈ C, where Uf := f ◦ T . λ is called the eigenvalue
corresponding to f . It is easy to see every eigenvalue has norm one, i.e. |λ| =
1. It is well known that T is ergodic iff 1 is a simple eigenvalue of T . If f ∈
L2(µ) is an eigenfunction, then cl{Unf : n ∈ Z} is a compact subset of L2(µ).
Generally, we say f almost periodic if cl{Unf : n ∈ Z} is compact in L2(µ). It is
well known that the set of all bounded almost periodic functions forms a U -invariant
and conjugated-invariant algebra of L2(µ) (denoted by Ac). The set of all almost
periodic functions is just the closure of Ac (denoted by Hc), and is also spanned
by the set of eigenfunctions. The following Proposition is a classical result (see for
example [Zi]).

Proposition 2.1. Let (X,B, µ, T ) be a MDS and H be a conjugated-invariant al-
gebra of L2(µ) consisting of bounded functions. Then there exists a sub-σ-algebra
A of B such that cl(H) = L2(X,A, µ). Moreover if H is U-invariant, then A is
T -invariant.
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By Proposition 2.1, there exists a T -invariant sub-σ-algebra K of B such that
Hc = L2(X,K, µ). We call K the Kronecker algebra of (X,B, µ, T ). It is well known
that T is weakly mixing iff Hc is trivial iff the constants are the only eigenfunctions
for T , i.e. the Korenecker algebra K is trivial. T is said to be compact or to
have discrete spectrum if L2(µ) can be spanned by the set of eigenfunctions, i.e.
Hc = L2(X,B, µ) or equivalently K = B.

A function f ∈ L2(µ) is called rigid if there is {tn} ∈ IF with lim T tnf = f
in L2-norm. For a fixed F = {tn} ∈ IF , it is easy to see that the set of all
bounded functions f ∈ L2(µ) with lim T tnf = f in L2-norm forms a U -invariant
and conjugated-invariant algebra of L2(µ) (denoted by AF ). The set of all functions
f ∈ L2(µ) with lim T tnf = f in L2-norm is just the closure of AF (denoted by
HF ). By Proposition 2.1, there exists T -invariant sub-σ-algebra KF of B such that
HF = L2(X,KF , µ).

A MDS (X,B, µ, T ) is called rigid if there is F = {tn} ∈ IF with HF = L2(µ),
i.e. lim T tnf = f in L2-norm for all f ∈ L2(µ). A MDS (X,B, µ, T ) is called mild
mixing if it has no nonconstant rigid function (this definition is equivalent to that
KF is trivial for each F ∈ IF , and is also equivalent to the condition described in
the first section [FW, F3]). Obviously, for a strongly mixing MSD KF is trivial for
each F ∈ IF , i.e. strong mixing implies mild mixing. On the other hand, since
every eigenfunction is rigid, mild mixing implies weak mixing. In fact, it can be
showed that mild mixing is strictly between weak mixing and strong mixing [FW].

By a topological dynamical system (for short TDS) we mean a pair (X,T ), where
X is a compact metric space and T is a continuous surjective map from X to
X. When T is a homeomorphism, we say T invertible. The set of T -invariant
probability measures defined on Borel sets of X, B(X), is denoted by MT (X). In
context measurability will be always related to B(X). Every invariant probability
measure µ ∈MT (X) induces a MDS (X,B(X), µ, T ).

(X,T ) is transitive if for each pair of opene (i.e. open and nonempty) subsets U
and V of X, there is n ∈ N such that U ∩ T−nV 6= ∅, and (X,T ) is (topologically)
weakly mixing if (X×X,T×T ) is transitive. (X,T ) is (topologically) strongly mixing
if for any opene subsets U and V of X, there is N ∈ N such that U ∩ T−nV 6= ∅
for each n ≥ N . A TDS (X,T ) is (topologically) mildly mixing if for any transitive
system (Y, S), (X × Y, T × S) is transitive.

Let F be a collection of subsets of Z+. If it is hereditary upward, i.e. F1 ⊆ F2

and F1 ∈ F imply F2 ∈ F , then F is said to be a family. If a family F is closed
under intersection and satisfies ∅ 6∈ F , then it is called a filter. For a family F
its dual is F∗ = {F ⊆ Z+|F ∩ F ′ 6= ∅ for all F ′ ∈ F}. The dual family of
IF is the set of cofinite subsets of Z+. The upper density of A ∈ IF is d̄(A) =
lim supN→∞ |A∩{0, 1, · · · , N −1}|/N. The lower density d(A) are similarly defined.
If d̄(A) = d(A), then we say A has density d(A). Let D = {A ⊆ Z+|d(A) = 1}. It
is easy to see D is a filter and D∗ = {A ⊆ Z+|d̄(A) > 0}. Let {bi}I

i=1 with bi ∈ N,
where I ∈ N or I = +∞, we define FS({bi}I

i=1) = {∑i∈α bi : α is a finite non-empty
subset of {1, 2, · · · , I} or N }. F is an IP set if there exists sequence of natural
number {bi}∞i=1 such that F = FS({bi}∞i=1). Denote the set of all IP sets by IP .
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Let {xn} be a sequence of a metric space (X, d), x ∈ X and F be a family. We
say xn F-converges to x, denoted by F − lim xn = x, if for any neighborhood U of
x, {n : xn ∈ U} ∈ F . The following is a well known result concerning mixing in
ergodic theory (see [F2, F3, W1]).

Theorem 2.1. Let (X,B, µ, T ) be a MDS. Then

(1) T is weak mixing iff D−limn→∞ µ(T−nA∩B) = µ(A)µ(B) for any A,B ∈ B;
(2) T is mild mixing iff IP∗− limn→∞ µ(T−nA∩B) = µ(A)µ(B) for any A,B ∈

B;
(3) T is strong mixing iff IF∗ − limn→∞ µ(T−nA ∩ B) = µ(A)µ(B) for any

A,B ∈ B.

In the topological setting we have a similar description. Let (X,T ) be a TDS and
U, V ⊆ X. We define the return times set N(U, V ) = {n ∈ Z+ : U ∩ T−n(V ) 6= ∅}.
Then we have ([F1, HY2, GW])

Theorem 2.2. Let (X,T ) be a TDS. Then

(1) (X,T ) is weakly mixing iff N(U, V ) is thick (i.e. containing arbitrarily long
intervals of Z+) for any opene sets U, V of X.

(2) (X,T ) is mildly mixing iff N(U, V ) has non-empty intersection with F − F
for any opene sets U, V of X and any IP set F , here F −F = {a− b : a, b ∈
F and a ≥ b}.

(3) (X,T ) is strongly mixing iff N(U, V ) is cofinite for any opene sets U, V of
X.

Remark 2.3. 1. Assume (X,T ) is a TDS and there is some µ ∈ MT (X) with full
support. Then it is easy to see that if T is weakly mixing (resp. mildly mixing,
strongly mixing) with respect to µ, then it is topologically weakly mixing (resp.
mildly mixing, strongly mixing).

2. Note that if (X,T ) is minimal then it is weakly mixing iff N(U, V ) ∈ D, and
it is mildly mixing iff N(U, V ) ∈ IP∗ [HY2].

Now we define sequence entropy. Let S = {0 ≤ t1 < t2 < · · · } ∈ IF and U
be a finite open cover of X. The topological sequence entropy of U with respect to
(X,T ) along S is defined by hS

top(T,U) = lim supn→∞
1
n

log N(
∨n

i=1 T−tiU), where
N(

∨n
i=1 T−tiU) is the minimal cardinality among all cardinalities of subcovers of∨n

i=1 T−tiU . The topological sequence entropy of (X,T ) along sequence S is hS
top(T ) =

supU hS
top(T,U), where supremum is taken over all finite open covers of X. If S = Z+

we recover standard topological entropy. In this case we omit the superscript Z+.
Let (X,B, µ, T ) be a MDS and suppose ξ and η are two finite partitions of X.

The entropy of ξ, written H(ξ), is defined by the formula

Hµ(ξ) = −
∑

A∈ξ

µ(A) log µ(A)

and the entropy of ξ given η, written H(ξ|η), is defined by the formula

Hµ(ξ|η) = Hµ(ξ ∨ η)−Hµ(η) = −
∑
B∈η

∑

A∈ξ

µ(A ∩B) log
µ(A ∩B)

µ(B)
.
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The sequence entropy of ξ with respect to (X,µ, T ) along S is defined by

hS
µ(T, ξ) = lim sup

n→+∞

1

n
Hµ(

n∨
i=1

T−tiξ)(= lim sup
n→+∞

1

n

n∑
j=2

Hµ(T−tiξ|
j−1∨
i=1

T−tiξ)).

And the sequence entropy of (X,B, T, µ) along S is hS
µ(T ) = supα hS

µ(T, α), where
supremum is taken over all finite measurable partitions. As in the topological case,
when S = Z+ we recover entropy of T with respect to µ. In this case we omit the
superscript Z+.

3. Mixing and sequence entropy for a measure

In this section, we will give some characterizations of mixing properties via se-
quence entropy for a MDS. First we give a new proof of a well known result by
Kushnirenko [Ku]. In the process to do it we obtain a lemma which is crucial for
the sequel. Let (X,B, T, µ) be an invertible MDS. We define a unitary operator
U : H → H by U(f) = f ◦ T , where H = L2(X,B, µ). Let F ∈ IF . Since H is a
separable metric space, it is easy to see that there exists S = {s1 < s2 < · · · } ⊆ F
such that limi→∞ < g,U sif > exists for any f, g ∈ H. Fixed f ∈ H, we define
Jf : H → C with Jf (g) = limi→∞ < g,U sif >. Then Jf is a continuous linear
functional on H. By the Riesz representation theorem, there exists S(f) ∈ H such
that Jf (g) =< g, S(f) >. Clearly, if f ≥ 0 then S(f) ≥ 0. First we have

Lemma 3.1. Given α = {A1, ..., Ak} ∈ PX there exists an infinite subsequence
S ′ ⊆ S such that hS′

µ (T, α) ≥ ∑
A∈α

∫
X
−S(1A) log S(1A)dµ.

Proof. First, we have
Claim: For any β = {B1, ..., Bl} ∈ PX and ε > 0, there exists M ∈ N such that

when m ∈ S and m ≥ M , Hµ(T−mα|β) ≥ ∑
A∈α

∫
X
−S(1A) log S(1A)dµ− ε.

Proof of the claim. Since limn→∞ µ(T−snAi ∩ Bj) =< S(1Ai
), 1Bj

> for 1 ≤ i ≤ k
and 1 ≤ j ≤ l,

lim
n→+∞

Hµ(T−snα|β) = lim
n→+∞

∑
i,j −µ(T−snAi ∩Bj) log(

µ(T−snAi∩Bj)

µ(Bj)
),

=
∑

i,j − < S(1Ai
), 1Bj

> log(
<S(1Ai

),1Bj
>

µ(Bj)
).

Let aij = − < S(1Ai
), 1Bj

> log(< S(1Ai
), 1Bj

> /µ(Bj)). Since ϕ(x) = −x log x
is concave and < S(1Ai

), 1Bj
> /µ(Bj) =

∫
Bj

S(1Ai
)dµBj

, where µBj
(·) = µ(· ∩

Bj)/µ(Bj), we deduce that

aij = µ(Bj)ϕ(
∫

Bj
S(1Ai

)dµBj
) ≥ µ(Bj)

∫
Bj

ϕ(S(1Ai
))dµBj

=
∫

Bj
ϕ(S(1Ai

))dµ.

We conclude that
∑
i,j

aij ≥
∑
i,j

∫

Bj

ϕ(S(1Ai
))dµ =

∑
i

∫

X

ϕ(S(1Ai
))dµ

and limn→+∞ Hµ(T−snα|β) ≥ ∑
i

∫
X

ϕ(S(1Ai
))dµ. This finishes the proof of the

claim.
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Now we may define an increasing sequence S ′ = {0 ≤ t1 < t2 < ...} ⊆ S such that

Hµ(T−trα|
r−1∨
i=1

T−tiα) ≥
∑
A∈α

∫

X

−S(1A) log S(1A)dµ− 1

2r
, ∀r ∈ N.

Therefore,

hS′
µ (T, α) = lim sup

r→+∞
1
r

∑r
k=2 Hµ(T−tkα|

k−1∨
i=1

T−tiα)

≥ lim sup
r→+∞

1
r

∑r
k=2(

∑
A∈α

∫
X
−S(1A) log S(1A)dµ− 1

2k )

=
∑

A∈α

∫
X
−S(1A) log S(1A)dµ.

¤
The following lemma is well known (see for example Lemma 4.15 in [W1]).

Lemma 3.2. Let r ≥ 1 be a fixed integer. For each ε > 0 there exists δ > 0 such
that if ξ = {A1, · · · , Ar}, η = {C1, · · · , Cr} are two partitions of (X,B, µ) into r sets
with

∑r
i=1 µ(Ai∆Ci) < δ then the Rohlin metric ρ(ξ, η) = Hµ(ξ|η) + Hµ(η|ξ) < ε.

Lemma 3.3. Let (X,B, µ, T ) be an invertible MDS, B ∈ B and R ∈ IF . Then
cl({Un1B : n ∈ R}) is a compact set of L2(µ) iff for each infinite sequence A ⊆ R,
hA

µ (T, {B, Bc}) = 0.

Proof. Assume cl({Un1B : n ∈ R}) is compact in L2(µ). Let A = {a1 < a2 <
· · · } ⊆ R and α = {B, Bc}. Note that ‖Un1B − Um1B‖L2(µ) = µ(T−nB4T−mB).
By Lemma 3.2 for any ε > 0 there is some N ∈ N such that for any n > N we can
find some i(n) ≤ N with ρ(T−anα, T−ai(n)α) < ε.

Hence for any n > N we have

H(T−anα|
n−1∨
i=1

T−aiα) ≤ H(T−anα|T−ai(n)α) ≤ ρ(T−anα, T−ai(n)α) < ε.

Then hA
µ (T, α) = lim supn→+∞

1
n

∑n
k=2 Hµ(T−akα|∨k−1

i=1 T−aiα) ≤ ε. As ε is arbi-

trary, hA
µ (T, α) = 0. Now we show the converse. If cl({Un1B : n ∈ R}) is not a

compact set of L2(µ), then there exist ε > 0 and an infinite sequence F ⊆ R such
that for a, b ∈ F, a 6= b one has ‖Ua1B − U b1B‖L2(µ) ≥ ε. By the discussion at the
beginning of the section, there exists S = {s1 < s2 < · · · } ⊆ F such that for any
f, g ∈ L2(µ),

(3.1) lim
i→∞

< g, U sif >=< g, S(f) > .

By Lemma 3.1, there exists an infinite subsequence A ⊆ S such that

hA
µ (T, {B, Bc}) ≥

∫

X

(−S(1B) log S(1B)− S(1Bc) log S(1Bc))dµ.

Since hA
µ (T, {B, Bc}) = 0, one has −S(1B)(x) log S(1B)(x) = 0 for x ∈ X µ-a.e.

Therefore S(1B) is a characteristic function, so that < 1X , S(1B) >= ||S(1B)||2L2(µ).

Take f = 1B, g = 1X in (3.1), one has limi→∞ < 1X , U si1B >=< 1X , S(1B) >,
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which implies ||S(1B)||2L2(µ) = ||1B||2L2(µ). Combining the fact with equation (3.1),

one has limi→∞ U si1B = S(1B). Hence for large enough i > j, one has ‖U si1B −
U sj1B‖L2(µ) ≤ ε

2
which contradicts the choice of F . ¤

Taking R = Z+ in Lemma 3.3 we have

Theorem 3.4 (Kushnirenko’s Theorem). [Ku] An invertible MDS (X,B, µ, T ) has
discrete spectrum iff hA

µ (T ) = 0 for any A ∈ IF .

Theorem 3.5. Let (X,B, µ, T ) be an invertible MDS. Then the following statements
are equivalent

(1) (X,B, µ, T ) is weakly mixing;
(2) for any B ∈ B with 0 < µ(B) < 1 and F ∈ D∗, there exists an infinite

sequence A ⊆ F such that hA
µ (T, {B, Bc}) > 0;

(3) for any finite non-trivial partition α of X and F ∈ D∗, there exists an infinite
sequence A ⊆ F such that hA

µ (T, α) > 0.

Proof. (1) ⇒ (2) Assume there is some B ∈ B with 0 < µ(B) < 1 and F = {a1 <
a2 < · · · } ∈ D∗ such that hA

µ (T, {B, Bc}) = 0 for any infinite sequence A ⊆ F .

Then by Lemma 3.3 cl({Un1B : n ∈ F}) is a compact set of L2(µ). Thus for any
ε > 0 there is some N ∈ N such that for any n > N we can find some i(n) ≤ N
with µ(T−anB∆T−ai(n)B) = ‖Uan1B − Uai(n)1B‖L2(µ) < ε.

Since (X,B, µ, T ) is weakly mixing, {n ∈ Z+ : |µ(T−nB ∩ T−aiB) − (µ(B))2| <
ε, ∀1 ≤ i ≤ N} ∈ D. Hence there is some m > N such that |µ(T−amB ∩ T−aiB) −
(µ(B))2| < ε for 1 ≤ i ≤ N . Particularly, |µ(T−amB ∩ T−ai(m)B)− (µ(B))2| < ε and
µ(T−amB∆T−ai(m)B) < ε. Thus

µ(B) = µ(T−amB) ≤ µ(T−amB ∩ T−ai(m)B) + µ(T−amB∆T−ai(m)B) < µ(B)2 + 2ε.

Since ε is arbitrary, we have µ(B) ≤ (µ(B))2 which contradicts the assumption.
(2) ⇒ (1) If (X,B, µ, T ) is not weakly mixing, then the Kronecker algebra K of

(X,B, µ, T ) is non-trivial. Hence there is some B ∈ K with 0 < µ(B) < 1 and
cl({Un1B : n ∈ Z+}) is a compact set of L2(µ). By Lemma 3.3 this contradicts the
assumption.

(2) ⇔ (3) is clear, as if α = {A1, . . . , An} ∈ PX , then
∨n

i=1{Ai, A
c
i} º α. ¤

Theorem 3.6. Let (X,B, µ, T ) be an invertible MDS. Then the following statements
are equivalent

(1) (X,B, µ, T ) is mildly mixing.
(2) For any B ∈ B with 0 < µ(B) < 1 and IP-set F , there exists an infinite

sequence A ⊆ F such that hA
µ (T, {B, Bc}) > 0.

(3) For any B ∈ B with 0 < µ(B) < 1 and any infinite set F of Z+, there exists
an infinite sequence A ⊆ F such that hA

µ (T, {B, Bc}) > 0.

Proof. (3) ⇒ (2) is clear.
(1) ⇒ (3) Let (X,B, µ, T ) be mildly mixing. Assume there exist a non-trivial

partition α = {B, Bc} of X and F ∈ IF such that for any infinite sequence A ⊆ F ,
one has hA

µ (T, α) = 0. By Lemma 3.3, cl({Un1B : n ∈ F}) is a compact set of metric
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space L2(µ). Hence, there exists {n1 < n2 < · · · } ⊂ F such that limi→∞ T ni1B = g
for some g. Now for any ε > 0, there exists N ∈ N such that when i, j ≥ N and i > j
then ||T ni1B − T nj1B||L2(µ) ≤ ε, that is, ||T ni−nj1B − 1B||L2(µ) ≤ ε for i, j ≥ N and
i > j. Therefore we can find F ′ = {s1 < s2 < · · · } such that limk→∞ T sk1B = 1B,
this shows that KF ′ is non-trivial, a contradiction as (X,B, µ, T ) is mildly mixing.

(2) ⇒ (1) Assume that for any B ∈ B and IP-set F , there exists an infinite
sequence A ⊆ F such that hA

µ (T, {B, Bc}) > 0. If (X,B, µ, T ) is not mildly mixing,
then there exists F ′ = {n1 < n2 < · · · } has the property that KF ′ is non-trivial.
Hence there exists B ∈ KF ′ with 0 < µ(B) < 1 such that limi→∞ T ni1B = 1B.
Without loss of generality (if necessity we pass to a subsequence), we can assume
||T ni1B − 1B||L2(µ) < 1

2i for any i ∈ N.

Let F = FS({ni}∞i=1), then F is an IP-set. Since ||T ni1B − 1B||L2(µ) < 1
2i for any

i ∈ N, it is easy to see that cl({Un1B : n ∈ F}) is a compact set of L2(µ). By Lemma
3.3 for each infinite sequence A ⊆ F , hA

µ (T, {B, Bc}) = 0, a contradiction. ¤
Call a MDS (X,B, µ, T ) intermixing if lim infn→∞ µ(T−nA∩B) > 0 for any A,B ∈

B with µ(A) > 0 and µ(B) > 0 ([FO, W2]). It is easy to see that strong mixing is
stronger than intermixing, and the example in [FO] showed the converse is not true.

Proposition 3.1. If an invertible MDS (X,B, µ, T ) is intermixing, then it is mildly
mixing.

Proof. Let (X,B, µ, T ) be intermixing. If it is not mildly mixing, then there is
B ∈ B with 0 < µ(B) < 1 and A ∈ IF such that for each infinite sequence S ⊆ A,
hS

µ(T, {B, Bc}) = 0 by Theorem 3.6. By Lemma 3.3 cl({Un1B : n ∈ A}) is a

compact set of L2(µ). Following the argument in the second part of the proof of
Lemma 3.3 we get that there is some infinite sequence {si} ⊆ A and D ∈ B such
that 0 < µ(D) < 1 and limi→∞ U si1B = 1D. Hence limi→∞ µ(T−siB ∩ Dc) = 0,
which implies that lim infn→∞ µ(T−nB ∩Dc) = 0, a contradiction. ¤

Now we turn our attention to the characterization of rigidity. First we need some
preparation. Let Kµ(F ) = {A ∈ B : hS

µ(T, {A,Ac}) = 0 for any S ⊆ F}. It is easy
to see that Kµ(F ) is a T -invariant σ-algebra of X.

Let F be an IP-set generated by n1, n2, · · · , i.e. F = FS({ni}∞i=1). Let F be
the set of all finite subsets of N. For α ∈ F , set nα =

∑
i∈α ni, then we have

F = {nα}α∈F . In the sequel by F − lim an = a we mean for any ε > 0 there is some
β ∈ F such that |anα − a| < ε for any α ∈ F with α ∩ β = ∅. A subset F ′ of F is
called an IP-subsystem, if there exist {αi}∞i=1 ⊆ F with αi ∩ αj = ∅, i 6= j such that
F ′ = FS({nαi

}∞i=1). Obviously, F ′ is an IP-subset of F .

Lemma 3.7. [F3] Let (X,B, µ, T ) be an invertible MDS and F be an IP-set. Then
there is an IP-subsystem F ′ of F and an orthogonal projection P on L2(µ) such that

F ′ − lim < T nf, g >=< Pf, g >, ∀f, g ∈ L2(µ).

In particular, if Pf = f , then F ′ − lim ‖T nf − f‖L2(µ) = 0. Moreover, there is a
T -invariant sub-σ-algebra B0 of B such that P(L2(X,B, µ)) = L2(X,B0, µ).
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Lemma 3.8. Let (X,B, µ, T ) be an invertible MDS. For a given IP-set F , there
exists an IP-system F ′ of F such that

(1) F ′− lim T nf = E(f |Kµ(F ′)) with respect to the weak topology for f ∈ L2(µ),
(2) F ′ − lim T nE(f |Kµ(F ′)) = E(f |Kµ(F ′)) in L2(µ)-norm for f ∈ L2(µ).

Proof. Let F ′,B0 as in Lemma 3.7. It remains to show B0 = Kµ(F ′). Let F ′ =
FS({ni}∞i=1) be an IP-set.

If A ∈ B0, then F ′ − lim ‖Un1A − 1A‖L2(µ) = 0. For any ε > 0, there is some
M ∈ N such that ‖Un1A − 1A‖L2(µ) < ε for any n ∈ FS({ni}∞i=M). It is easy to see

that if a ∈ F ′ then a = b + c for some b ∈ FS({ni}∞i=M) and c ∈ FS({ni}M−1
i=1 ). We

have
‖Ua1A − U c1A‖L2(µ) = ‖U b1A − 1A‖L2(µ) < ε.

Since ε is arbitrary, cl({Un1A : n ∈ F ′}) is compact in L2(µ). By Lemma 3.3,
A ∈ Kµ(F ′). Conversely, let A ∈ Kµ(F ′). By Lemma 3.7, limi→∞ < Unif, g >=<
Pf, g > for each f, g ∈ L2(µ). By Lemma 3.1 there exists an infinite subset S ′ ⊆
{n1, n2, · · · } such that hS′

µ (T, {A,Ac}) ≥ ∫
X

[−P(1A) logP(1A)−P(1Ac) logP(1c
A)]dµ.

Since A ∈ Kµ(F ′), hS′
µ (T, {A,Ac}) = 0. Moreover we have that P(1A) is a

characteristic function and limi→∞ Uni1A = P(1A) (following the argument in the
second part of the proof of Lemma 3.3). Since P(1A) ∈ L2(B0) and B0 is T -
invariant, one has UmP(1A) ∈ L2(B0) for any m ∈ Z (see Lemma 3.7). Since
||1A − U−niP(1A)||L2(µ) = ||Uni1A − P(1A)||L2(µ) → 0 when n → ∞ and L2(B0) is a
closed subspace of L2(µ), 1A ∈ L2(B0), i.e. A ∈ B0. Thus we have B0 = Kµ(F ′). ¤

Now we are ready to show

Theorem 3.9. An invertible MDS (X,B, µ, T ) is rigid iff there is some IP set F
such that hA

µ (T ) = 0 for any infinite A ⊆ F .

Proof. Assume that (X,B, µ, T ) is rigid. Then there exists an infinite sequence
{ni} such that limi→∞ Unif = f in L2(µ)-norm for f ∈ L2(µ). Let {fj}∞1 be a
countable dense subset of L2(µ). Without loss of generality (if necessity we pass to
a subsequence), we can assume that

(3.2) ||Unifj − fj||L2(µ) <
1

2i
for 1 ≤ j ≤ i.

Let F be an IP-set generated by {ni}. By (3.2) for each j ∈ N, cl({Unfj : n ∈ F})
is a compact subset of L2(µ). Moreover, cl({Unf : n ∈ F}) is a compact subset of
L2(µ) for each f ∈ L2(µ). By Lemma 3.3 hA

µ (T ) = 0 for any A ⊆ F .

Conversely assume there is some IP set F such that hA
µ (T ) = 0 for any A ⊆ F .

By Lemma 3.8 there exists an IP-system F ′ of F such that

(3.3) F ′ − lim T nE(f |Kµ(F ′)) = E(f |Kµ(F ′)) in L2(µ)-norm for f ∈ L2(µ).

Since hA
µ (T ) = 0 for any A ⊆ F , Kµ(F ′) = B. Hence E(f |Kµ(F ′)) = f for

f ∈ L2(µ). Combining the fact and (3.3), we have F ′ − lim T nf = f in L2(µ)-
norm for any f ∈ L2(µ). Let F ′ be generated by {ni}∞i=1, then limi→∞ T nif = f in
L2(µ)-norm for f ∈ L2(µ), i.e. (X,B, µ, T ) is rigid. ¤
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Finally we give another description for several kinds of mixing using sequence
entropy. Recall that PX be the set of finite measurable partitions of X and it is a
complete separable metric space with Rohlin metric ρ (see Lemma 3.2 for definition).
We remark that (1) and (3) appeared in [Hu1].

Theorem 3.10. Let (X,B, µ, T ) be an invertible MDS. Then

(1) T is weakly mixing iff for any A ∈ D∗ there is some B ⊆ A such that
hB

µ (T, ξ) = Hµ(ξ) for all ξ ∈ PX .
(2) T is mildly mixing iff for any IP set A there is some B ⊆ A such that

hB
µ (T, ξ) = Hµ(ξ) for all ξ ∈ PX .

(3) T is strongly mixing iff for any infinite sequence A of Z+ there is some B ⊆ A
such that hB

µ (T, ξ) = Hµ(ξ) for all ξ ∈ PX .

Proof. Assume T is weakly mixing (resp. mild mixing, strong mixing). Then we
have F − lim µ(T−nC ∩ D) = µ(C)µ(D), ∀C, D ∈ B, where F is D (resp. IP∗,
IF∗). Moreover since F is a filter, for any α, β ∈ PX one has

(3.4)

F − lim Hµ(T−nα|β) = F − lim Hµ(T−nα ∨ β)−Hµ(β)
= F − lim(

∑
C∈α,D∈β −µ(T−nC ∩D) log µ(T−nC ∩D))−Hµ(β)

=
∑

C∈α,D∈β −µ(C)µ(D) log(µ(C)µ(D))−Hµ(β)
= Hµ(α).

Let {ξk}∞k=1 be a dense set of finite partitions in PX and A ∈ F∗. By (3.4) and
the fact that F is a filter, we can define an increasing sequence B = {tn}∞n=1 ⊆ A
such that

Hµ(T−tnξk|
n−1∨
i=1

T−tiξk) ≥ Hµ(ξk)− 2−n, for any n ≥ 2, 1 ≤ k ≤ n.

Fix k ∈ N. Then for n > k,

Hµ(
∨n

i=1 T−tiξk) = Hµ(
∨k

i=1 T−tiξk) +
∑n

i=k+1 Hµ(T−tiξk|
∨i−1

j=1 T−tjξk)

≥ Hµ(
∨k

i=1 T−tiξk) + (n− k)Hµ(ξk)−
∑n

i=k+1 2−i.

Therefore, we have hB
µ (T, ξk) = Hµ(ξk) holds for any k. As {ξk} is dense in PX ,

for any ξ ∈ PX and any ε > 0 there is some ξk such that ρ(ξ, ξk) < ε. Using
|hB

µ (T, ξ)− hB
µ (T, η)| ≤ ρ(ξ, η), we have hB

µ (T, ξ) ≥ hB
µ (T, ξk)− ε ≥ Hµ(ξ)− 2ε. As

ε is arbitrary, we have hB
µ (T, ξ) = Hµ(ξ) for each ξ ∈ PX .

For the proof in the other direction, (1),(2) see Theorem 3.5, 3.6 and (3) by
Saleski’s Theorem [S]. ¤

4. Topological mixing and topological sequence entropy

In this section, we will give the characterizations of several topological mix-
ing properties via sequence entropy. First, we start with some notations. Let
X be a topological space. By an admissible cover U we mean that U is finite
and if U ={U1,U2,· · · ,Un}, then (

⋃
j 6=i Uj)

c has nonempty interior for each i ∈
{1, 2, · · · , n}. By an admissible cover U separating (x1, x2) we mean that if U =
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{U1, U2}, then for each Ui (1 ≤ i ≤ 2) there exists xji
(ji = 1, 2) such that

xji
6∈ cl(Ui). Similarly, we define admissible partition α with respect to (x1, x2).

Definition 4.1. Let (X,T ) be a TDS and F ∈ IF . Then

(1) (x1, x2) is called an F -sequence entropy pair if x1 6= x2 and for any admissible
open cover U separating (x1, x2) there exists an infinite sequence A ⊆ F such
that hA

top(T,U) > 0. Denote by SE(X,T, F ) the set of all F -sequence entropy
pairs. When F = Z+, we write simply SE(X,T, F ) as SE(X,T ).

(2) (X,T ) is said to have F -sequence uniform positive entropy (F−s.u.p.e. for
short) if SE(X,T, F ) = X ×X \∆X .

(3) (X,T ) is F -null if SE(X,T, F ) = ∅.
The following proposition states the basic properties of sequence entropy pairs

with respect to a given F ∈ IF . The proof is similar to the ones of the corresponding
results in [B2].

Proposition 4.1. Let (X,T ) be a TDS and F ∈ IF .

(1) If U = {U1, U2} is an open cover of X with hA
top(T,U) > 0 for some in-

finite sequence A ⊆ F , then there exist x1 ∈ U c
1 , x2 ∈ U c

2 with (x1, x2) ∈
SE(X,T, F ).

(2) SE(X,T, F ) ∪∆X is a closed T × T -invariant subset of X ×X.
(3) Let π : (Y, S) → (X,T ) be a factor map of TDS.

(a) If (x1, x2) ∈ SE(X,T, F ), then there exist y1, y2 ∈ Y such that π(y1) =
x1, π(y2) = x2 and (y1, y2) ∈ SE(Y, S, F ).

(b) If (y1, y2) ∈ SE(Y, S, F ) and π(y1) 6= π(y2), then one has (π(y1),
π(y2)) ∈ SE(X,T, F ).

(4) Suppose W is a closed T -invariant subset of (X,T ). If (x1, x2) is an F -
sequence entropy pair of (W,T |W ), then it is also an F -sequence entropy
pair of (X,T ).

Remark 4.2. In [B2] Blanchard showed that entropy pairs have the same properties.
By Proposition 4.1 (1), we know that (X,T ) is F -null iff for each infinite sequence
A ⊆ F , hA

top(T ) = 0. In the next section we will show that any F-null system has
zero topological entropy.

Using Proposition 4.1 one easily gets

Theorem 4.3. For a TDS (X,T ) and F ∈ IF the smallest closed invariant equiva-
lence relation containing SE(X,T, F ) induces the maximal F -null factor (XF , TF ).

Disjointness of two TDS is defined in [F1]. If (X,T ) and (Y, S) are two TDS we
say J ⊆ X × Y is a joining of X and Y if J is a non-empty closed invariant set
and is projected onto X and Y . If each joining is equal to X × Y we then say that
(X,T ) and (Y, S) are disjoint or (X,T ) ⊥ (Y, S) or X ⊥ Y . Following [B2] it is easy
to prove

Theorem 4.4. Each F -s.u.p.e. system is disjoint from any minimal F -null system.

For any F ∈ IF we define F -transitive and F -mixing as follows.
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Definition 4.5. Let (X,T ) be a TDS and F ∈ IF . (X,T ) is called F -transitive
if for each pair of opene sets U, V , there exists n ∈ F such that T−nV ∩ U 6= ∅. If
(X ×X,T × T ) is F -transitive, then (X,T ) is said to be F -mixing.

Clearly, an F -mixing system is weakly mixing. When F = Z+ we omit F in the
notation. The following is the classical description for weak mixing which we will
use in the section.

Theorem 4.6. ([F1, Ak]) Let (X,T ) be a TDS, then the following conditions are
equivalent.

(1) (X,T ) is weakly mixing.
(2) N(U,U) ∩N(U, V ) 6= ∅ for every opene sets U, V in X.
(3) For every opene sets U1, U2, V1, V2 in X, there exist opene sets U, V in X

such that N(U, V ) ⊆ N(U1, V1) ∩N(U2, V2).
(4) {N(U, V )|U, V are opene sets in X} generates a filter.

By this theorem we can get the following result readily:

Proposition 4.2. Let (X,T ) be a TDS. Then the following statements are equiva-
lent:

(1) (X,T ) is F -mixing;
(2) (X,T ) is weakly mixing and F -transitive;
(3) N(U,U) ∩N(U, V ) ∩ F 6= ∅ for any opene sets U, V .

For an F ∈ IF , F -s.u.p.e. and mixing are connected by the following theorem.
Note that F − F = {a− b ≥ 0 : a, b ∈ F}.
Lemma 4.7. Let (X,T ) be a TDS and F ∈ IF . If (X,T ) has F -s.u.p.e., then it
is (F − F )-mixing.

Proof. Let (X,T ) have F -s.u.p.e.. If (X,T ) is not (F − F )-mixing, then by Propo-
sition 4.2 there exist opene sets U1, U2 with N(U1, U1) ∩N(U1, U2) ∩ (F − F ) = ∅.

As 0 ∈ (F − F ), U1 ∩ U2 = ∅. Take xi ∈ Ui and a closed neighborhood Vi ⊆ Ui of
xi, i = 1, 2. Then V = {V c

1 , V c
2 } is an open cover of X. Since for any n ∈ (F − F )

we have U1 ∩ T−nU1 = ∅ or U1 ∩ T−nU2 = ∅, there is a sequence {Wn}n∈(F−F ) and
Wn = V c

1 or Wn = V c
2 such that V1 ⊆ T−nWn for each n ∈ (F − F ).

For any sequence A = {0 < t1 < t2 < · · · } ⊆ F and n ∈ N, consider for each
x ∈ X the first i ∈ {1, 2, · · · , n} such that T tix ∈ V1, when there exists one. We get
that the Vn =

∨n
i=1 T−tiV admits a subcover by the sets

T−t1V c
1 ∩ · · · ∩ T−ti−1V c

1 ∩ T−tiW0 ∩ T−ti+1Wti+1−ti ∩ · · · ∩ T−tnWtn−ti ,

i = 1, 2, · · · , n, and
⋂n

i=1 T−tiV c
1 . Hence for all n ∈ N, H(Vn) ≤ n + 1. So we have

hA
top(T,V) = 0. This shows that (x1, x2) 6∈ SE(X,T, F ) which contradicts the fact

that (X,T ) has F -s.u.p.e.. Thus (X,T ) is (F − F )-mixing. ¤
Remark 4.8. By the above proof, it is easy to see that if (x1, x2) ∈ SE(X,T, F ) then
N(U1, U1) ∩N(U1, U2) ∩ (F − F ) 6= ∅ for any open neighborhood Ui of xi, i = 1, 2.
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Let U be a finite cover of X. Define H(U) = log N(U). We say U topologically
non-trivial, if each element of U is not dense in X. Recall that for {bi}I

i=1 with
bi ∈ N, where I ∈ N or I = +∞, we define FS({bi}I

i=1) = {∑i∈α bi : α is a finite
non-empty subset of {1, 2, · · · , I} or N }.
Lemma 4.9. Let (X,T ) be a TDS, F =FS({pi}∞i=1) and Fn = FS({pi}∞i=n), n ∈ N.
If for each n ∈ N, (X,T ) is (Fn − Fn)-mixing, then for each admissible open cover
U (resp. non-trivial finite open cover V) there exists an infinite sequence A ⊆ F
such that hA

top(T,U) = H(U) (resp. hA
top(T,V) > 0).

Proof. Let (X,T ) be (Fn−Fn)-mixing for each n ∈ N, and let U = {U1, U2, · · · , Ul}
be an admissible open cover. Put Wi = int(Ui \

⋃
j 6=i Uj), i = 1, 2, · · · , l, then {Wi}

are pairwise disjoint opene sets. First we have:
Claim: For any n ∈ N, there exists Cn = {tn1 < tn2 < · · · < tnn} ⊆ F such that
tn1 ≥ n and for any s ∈ {1, 2, · · · , l}n,

⋂n
i=1 T−tni Ws(i) 6= ∅.

Proof of Claim We use induction on n. Obviously, if n = 1 the claim holds.
Suppose that when n = k the claim holds, and we want to show the claim holds when
n = k+1. Thus by this assumption, there exists Ck = {M ≤ tk1 < tk2 < · · · < tkk} ⊆ F

such that for any s ∈ {1, 2, · · · , l}k,
⋂k

i=1 T−tki Ws(i) 6= ∅.
Take mk ∈ N be larger enough for Ck to be a subset of FS({pi}mk−1

i=1 ). By Theorem

4.6 and Proposition 4.2, we have [
⋂

s∈{1,2,··· ,l}k

l⋂
j=1

N(
k⋂

i=1

T−tki Ws(i),Wj)] ∩ (Fmk
− Fmk

)

is infinite, and then there exist a1, a2 ∈ Fmk
such that a2 ≥ k + 1 and

(a1 − a2) ∈
⋂

s∈{1,2,··· ,l}k

l⋂
j=1

N(
k⋂

i=1

T−tki Ws(i),Wj) and a1 − a2 > tkk.

Let tk+1
i = tki + a2, i = 1, 2, · · · , k and tk+1

k+1 = a1. Then Ck+1 = {tk+1
1 < tk+1

2 <

· · · < tk+1
k+1} ⊆ F , tk+1

1 ≥ k + 1 and for any s ∈ {1, 2, · · · , l}k, j = 1, 2, · · · , l,⋂k
i=1 T−tki Ws(i)∩T−(a1−a2)Wj 6= ∅, i.e.

⋂k+1
i=1 T−tk+1

i Wr(i) 6= ∅ for any r ∈ {1, 2, · · · , l}k+1.
This shows when n = k + 1 the claim holds. This ends the proof.

By claim, we choose {ni}∞i=1 such that nm > (1 − 1
m

)
∑m

i=1 ni and max Cnm <
min Cnm+1 for m ∈ N. Let A =

⋃∞
i=1 Cni

⊆ F and Am =
⋃m

i=1 Cni
. Then

hA
top(T,U) ≥ lim infm→∞

log N(
∨

j∈Am
T−jU)∑m

i=1 ni
≥ lim infm→∞

log N(
∨

j∈Cnm
T−jU)∑m

i=1 ni

= lim infm→∞
log lnm∑m

i=1 ni
= limm→∞ nm∑m

i=1 ni
log l = log l = H(U).

As hA
top(T,U) ≤ H(U), we have hA

top(T,U) = H(U).
Now let V = {V1, · · · , Vk} be a non-trivial finite open cover. Take xj ∈ intV c

j , j =
1, 2, · · · , k. Assume {y1, y2, · · · , yl} = {x1, x2, · · · , xk} with ys 6= yt for 1 ≤ s <

t ≤ l. Since
⋂k

j=1 intV c
j = ∅, we have l ≥ 2. Moreover we may take pairwise

disjoint closed neighborhood Wi of yi, i = 1, 2, · · · , l such that the open cover U =
{W c

1 ,W c
2 , · · · ,W c

l } is coarser than V . Let P = {W1,W2, · · · ,Wl}. Note that (l −
1)|E|N(

∨
j∈E T−jU) ≥ |{s ∈ {1, 2, · · · , l}E :

⋂
j∈E T−jWs(j) 6= ∅}| where E ⊂ Z+ is a
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finite set. Similar to the case when U is an admissible cover, we can find an infinite
sequence A ⊆ F such that

hA
top(T,U) ≥ lim infm→∞

log N(
∨

j∈Am
T−jU)∑m

i=1 ni

≥ lim infm→∞
log N(

∨
j∈Cnm

T−jU)∑m
i=1 ni

≥ lim infm→∞
log 1

(l−1)nm |{s∈{1,2,··· ,l}E :
⋂

j∈E T−jWs(j) 6=∅}|∑m
i=1 ni

= lim infm→∞
log 1

(l−1)nm lnm

∑m
i=1 ni

= limm→∞ nm∑m
i=1 ni

log l
l−1

= log l
l−1

> 0.

Hence hA
top(T,V) ≥ hA

top(T,U) > 0. ¤
Remark 4.10. Using the idea of the above proof, we could get easily that if (X,T ) is
F -mixing for an F ∈ IF , then for each admissible open cover U (resp. non-trivial
finite open cover V) there exists an infinite sequence A ⊆ F such that hA

top(T,U) =

H(U) (resp. hA
top(T,V) > 0).

Lemma 4.11. Let (X,T ) be a TDS, F = FS({pi}∞i=1) and Fn = FS({pi}∞i=n),
n ∈ N. Then (X,T ) has F -s.u.p.e. iff (X,T ) is (Fn − Fn)-mixing for each n ∈ N.

Proof. By Lemma 4.9, it is left to show that if (X,T ) has F−s.u.p.e., then (X,T )
is (Fn − Fn)-mixing for each n ∈ N. By Lemma 4.7. it remains to show (X,T )
has Fn-s.u.p.e.. Let U = {U1, U2} be an admissible open cover. Since (X,T ) has
F -s.u.p.e., there exists an infinite sequence A ⊆ F such that hA

top(T,U) > 0.
Put Bn = FS({pi}n

i=1) = {pi1 + pi2 + · · · + pik : 1 ≤ i1 < i2 < · · · < ik ≤ n}.
For each a ∈ Bn, let Aa = A ∩ (a + Fn). Since hA

top(T,U) ≤ ∑
a∈Bn

hAa
top(T,U), there

exists a ∈ Bn such that hAa
top(T,U) > 0. Put A′ = Aa − a. Then A′ ⊆ Fn and

hA′
top(T,U) = hAa

top(T,U) > 0. This shows that (X,T ) has Fn-s.u.p.e.. ¤
By Lemma 4.11 and Theorem 2.2 (2), it is easy to see that

Theorem 4.12. Let (X,T ) be a TDS. Then the following statements are equivalent:

(1) (X,T ) is mildly mixing.
(2) For each IP-set F , (X,T ) has F -s.u.p.e..
(3) For each topologically non-trivial finite open cover U and IP-set F , there

exists an infinite sequence A ⊆ F such that hA
top(T,U) > 0.

Theorem 4.13. Let (X,T ) be a TDS. Then the following statements are equivalent:

(1) (X,T ) is weakly mixing.
(2) (X,T ) has Z+-s.u.p.e..
(3) For each topologically non-trivial finite open cover U there exists an infinite

sequence A ⊆ Z+ such that hA
top(T,U) > 0.

Proof. The result follows by taking F to be the the IP-set generated by 1, 1, · · · in
Lemmas 4.9 and 4.11. Or see [HLSY] for a little short and direct proof. ¤
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We remark that since for any F ∈ IF , SE(X,T, F ) ⊆ SE(X,T ), F -s.u.p.e.
implies weak mixing by Theorem 4.13.

Li [L] showed that (X,T ) is weakly mixing iff for any admissible open cover U of
X there is some A ⊆ Z+ such that hA

top(T,U) = H(U). We have

Theorem 4.14. Let (X,T ) be a TDS. Then

(1) (X,T ) is weakly mixing iff for any admissible open cover U of X there is
some A ⊆ Z+ such that hA

top(T,U) = H(U).
(2) (X,T ) is mildly mixing iff for any admissible open cover U of X and any IP

set F there is some A ⊆ F such that hA
top(T,U) = H(U).

(3) If (X,T ) is strongly mixing, then for any admissible open cover U of X and
any F ∈ IF there is some infinite A ⊆ F such that hA

top(T,U) = H(U). The
converse is not true.

Proof. (1) and (2) follow from Lemma 4.7, 4.9 and 4.11. The first part of (3) comes
from the Remark of Lemma 4.9. Example 5 of [B1] shows the second part of (3)
(see also Example A of section 6 in [HY2]). ¤

To end the section we remark that the topological counterpart of rigidity is uni-
formly rigid, i.e. if there are {ni} → ∞ with lim

i→∞
sup
x∈X

d(x, T ni(x)) = 0. By Lemma

4.1 and Proposition 3.3 of [HY2] we know that if (X,T ) is uniformly rigid then
there is an IP-set F such that it is F -null. But the converse is not true even under
the minimality assumptions. In fact a minimal system is uniformly rigid iff it is
A-equicontinuous for some IP -set A, see [HY2].

5. Positive entropy implies positive sequence entropy for covers
and applications

In the section, we aim to prove that if the topological entropy of a finite open
cover is positive, then the topological entropy with respect to the cover and each
infinite sequence is positive. The main tools are the so called local variational
principle developed in [BGH], [HY1], [R] and [GW], see also [HMY], and [HMRY].
As applications, we show that an entropy pair is a sequence entropy pair with respect
to any sequence. Moreover, we obtain that any transitive diagonal flow is mildly
mixing and a minimal topological K-system is strongly mixing.

To do this we start with some notations. Let (X,T ) be a TDS. In this section,
a cover of X is a finite family of Borel subsets of X, whose union is X. We denote
the set of covers by CX and the set of open covers by C0

X .
In [R], Romagnoli introduced a notion of measure theoretical entropy for covers

that extended definition of partition to covers. Let (X,T ) be a TDS and µ ∈
MT (X). For U ∈ CX of X define Hµ(U) = inf α ∈ PX , α º UHµ(α). It is not
hard to see that many of the properties of Hµ(α) can be extended to Hµ(U) from
partitions to covers. The following lemma is proved in [R].

Lemma 5.1. [R, Lemma 3.8] Let (X,T ) be a TDS and µ ∈MT (X). If U ,V ∈ CX ,
then

(1) 0 ≤ Hµ(U) ≤ log N(U).
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(2) If U º V, then Hµ(U) ≥ Hµ(V).
(3) Hµ(U ∨ V) ≤ Hµ(U) + Hµ(V).
(4) Hµ(T−1U) = Hµ(U).

One gets easily that Hµ(Un−1
0 ) is a sub-additive function of n ∈ N from (3) and

(4) of Lemma 5.1, and we may define the µ-entropy of U as

hµ(T,U) = lim
n→+∞

1

n
Hµ(Un−1

0 ) = inf
n≥1

1

n
Hµ(Un−1

0 ).

Using (1) of Lemma 5.1 we have hµ(T,U) ≤ htop(T,U). We remark that by the same
way we may define hA

µ (T,U) for any A ∈ IF and we also have hA
µ (T,U) ≤ hA

top(T,U)
for any A ∈ IF .

Now, for any an invertible TDS (X,T ), µ ∈ M(X,T ) and α ∈ PX , we define
Πµ = {A ∈ B(X) : hµ(T, {A,Ac}) = 0}. We call Πµ the Pinsker σ-algebra of
(X,µ, T ). The following lemma is a classic result.

Lemma 5.2. Let (X,T ) be an invertible TDS, µ ∈ MT (X) and α ∈ PX . If Πµ is
the Pinsker σ-algebra of (X,µ, T ), then lim

k→∞
hµ(T k, α) = Hµ(α|Πµ).

As a corollary of the above result, one has

Lemma 5.3. Let (X,T ) be an invertible TDS, µ ∈ MT (X) and α ∈ PX . If Πµ is
the Pinsker σ-algebra of (X,µ, T ), then lim

k→∞
Hµ(α|∨∞

i=1 T−ikα ∨ Πµ) = Hµ(α|Πµ).

Proof. It follows from Lemma 5.2 and the fact (see for example Lemma 18.7.(1) in
[G]) hµ(T k, α) = Hµ(α|∨∞

i=1 T−ikα) = Hµ(α|∨∞
i=1 T−ikα ∨ Πµ). ¤

The following proposition plays a crucial role in the proof of our main results. First
let us introduce several notions. Let (X,T ) be an invertible TDS, µ ∈M(X,T ) and
Πµ be the Pinsker σ-algebra of (X,µ, T ). For every M ∈ N define a measure λM

µ on

the product space XM (X × ...×X, M times) as the unique measure that satisfies

for every A1, . . . , AM ∈ B(X), λM
µ (A1 × · · · × AM) =

∫
X

∏M
m=1 E(1Am|Πµ)dµ.

Proposition 5.1. Let (X,T ) be an invertible TDS, µ ∈ MT (X) and U ∈ Co
X . If

hµ(T,U) > 0, then for each A ∈ IF one has hA
µ (T,U) > 0.

Proof. The proof follows the ideas in the proofs of [HY1] or [HMRY]. Recall that
the following two claims have been proved in the proof of Theorem 5.12 in [HMRY].
Let U = {U1, U2, . . . , UM} ∈ Co

X . First, we have

Claim 1: λM
µ (

∏M
m=1 U c

m) > 0.

Since λM
µ (

∏M
m=1 U c

m) =
∫

X

∏M
m=1 E(1Uc

m
|Πµ)(x)dµ(x) > 0, there is K ∈ N such

that µ(EK) > 0, where EK = {x ∈ X : min1≤m≤M E(1Uc
m
|Πµ)(x) ≥ 1

K
}.

For any s = (s(1), s(2), · · · , s(M)) ∈ {0, 1}M set As =
⋂M

m=1 Um(s(m)), where

Um(0) = Um and Um(1) = U c
m, and put α = {As : s ∈ {0, 1}M}.

Claim 2: Hµ(α|β ∨Πµ) ≤ Hµ(α|Πµ)− µ(EK)
K

log( M
M−1

) for any finite Borel partition
β which is finer than U as a cover.
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Put ε = µ(EK)
K

log( M
M−1

). By Lemma 5.3 there exists l > 0 such that

(5.1) Hµ(α|
∞∨
i=1

T−ilα ∨ Πµ) ≥ Hµ(α|Πµ)− ε

2
.

Now for a given sequence A = {a1 < a2 < · · · } ⊂ N, there exists r ∈ {0, 1, · · · , l−
1} such that

d∗ = lim sup
n→∞

|{i ∈ N : ai ≡ r (mod l) and i ≤ n}|
n

> 0.

Put Ar = {ai : ai ≡ r (mod l), i ∈ N} and we rewrite Ar = {b1l + r < b2l + r <
b3l + r < · · · }.

Now

(5.2)

hA
µ (T,U) = lim sup

n→∞
1
n
Hµ(

n∨
i=1

T−aiU)

≥ lim sup
n→∞

1
n
Hµ(

∨
ai∈Ar,i≤n

T−aiU)

≥ d∗ lim inf
n→∞

1
|{i≤n:ai∈Ar}|Hµ(

∨
ai∈Ar,i≤n

T−aiU)

= d∗ lim inf
m→∞

1
m

Hµ(
m∨

i=1

T−bil+rU)

= d∗ lim inf
m→∞

1
m

Hµ(
m∨

i=1

T−bilU).

Let m ≥ 1 and let βm ∈ PX with βm º ∨m
i=1 T−bilU . Since for every i ∈ {1, ..., m},

T bilβm º U (recall that T is a homeomorphism), from Claim 2 we deduce

Hµ(βm) ≥ Hµ(βm|Πµ)
= Hµ(βm ∨

∨m
i=1 T−bilα|Πµ)−Hµ(

∨m
i=1 T−bilα|βm ∨ Πµ)

≥ Hµ(
∨m

i=1 T−bilα|Πµ)−
m∑

i=1

Hµ(α|T bilβm ∨ Πµ)

≥ Hµ(
m∨

i=1

T−bilα|Πµ)−m(Hµ(α|Πµ)− ε) (by Claim 2).

=
∑m

i=1 Hµ(α|∨m
j=i+1 T−(bj−bi)lα ∨ Πµ)−m(Hµ(α|Πµ)− ε)

≥ mHµ(α|∨∞
i=1 T−ilα ∨ Πµ)−m(Hµ(α|Πµ)− ε)

≥ m(Hµ(α|Πµ)− ε
2
)−m(Hµ(α|Πµ)− ε) (by (5.1))

= ε
2
m.

Hence Hµ(
∨m

i=1 T−bilU) ≥ ε
2
m. Combining this inequality with (5.2), one obtains

hA
µ (T,U) ≥ d∗ · ε

2
> 0, which ends the proof. ¤

Let d be the compatible metric of X, we say (XT , S) is the natural extension of

(X,T ), if X̃ = {(x1, x2, · · · ) : T (xi+1) = xi, xi ∈ X, i ∈ N}, which is a subspace of
the product space Π∞

i=1X with the compatible metric dT defined by

dT ((x1, x2, · · · ), (y1, y2, · · · )) =
∞∑
i=1

d(xi, yi)

2i
.
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Moreover, σT : X̃ → X̃ is the shift homeomorphism, i.e. σT (x1, x2, · · · ) =

(T (x1), x1, x2, · · · ), and πi : X̃ → X is the projection to the i-th coordinate. Partic-

ularly π1 : (X̃, σT ) → (X,T ) is a factor map. Now we are ready to prove

Theorem 5.4. Let (X,T ) be a TDS and U ∈ Co
X . If htop(T,U) > 0, then for each

A ∈ IF one has hA
top(T,U) > 0.

Proof. First, we assume that T is a homeomorphism. By the local variational prin-
ciple [HMRY, R] there exists µ ∈ MT (X) such that hµ(T,U) = htop(T,U) > 0.
According to Proposition 5.1, one has hA

µ (T,U) > 0 for each A ∈ IF . Thus,

hA
top(T,U) ≥ hA

µ (T,U) > 0.
For the general case we may pass it to the natural extension. This ends the proof

of the theorem. ¤
Let (X,T ) be a TDS. Recall that a pair (x1, x2) is called an entropy pair if x1 6=

x2 ∈ X and for any admissible open cover U separating (x1, x2) we have htop(T,U) >
0. Denote by E(X,T ) the set of entropy pairs of (X,T ). As an application of
Theorem 5.4, we have

Corollary 5.1. Let (X,T ) be a TDS. If htop(T ) > 0, then for each F ∈ IF ,
hF

top(T ) > 0. Moreover for any F ∈ IF , F -null system has zero entropy.

Proof. Assume that htop(T ) > 0. Then there is a finite open cover U such that
htop(T,U) > 0. By Theorem 5.4, for each F ∈ IF we have hF

top(T,U) > 0, and thus

hF
top(T ) > 0. ¤

Corollary 5.2. Let (X,T ) be a TDS. Then E(X,T ) ⊆ SE(X,T, F ) for any F ∈
IF .

In [B2] Blanchard introduced the notion of diagonal flow and proved that any
diagonal flow is disjoint from any minimal system with zero entropy. We say (X,T )
has u.p.e. if E(X,T ) ∪ ∆X = X2, and it is a diagonal flow if E(X,T ) ∪ ∆X ⊇
{(x, Tx) : x ∈ X}, and it has c.p.e. if the smallest closed invariant equivalence
relation containing E(X,T ) is X2.

Theorem 5.5. Any transitive diagonal flow is mildly mixing.

Proof. Let (X,T ) be a transitive diagonal flow. Without loss of generality we assume
that (X,T ) is non-trivial. By Theorem 2.2 (2), it remains to show that for any opene
U, V and IP-set F , N(U, V ) ∩ (F − F ) 6= ∅.

Fix opene sets U, V and an IP-set F . Let F = FS({pi}∞i=1). Since (X,T ) is
transitive, there exist opene subsets V0, V1, · · · , Vr with V0 ⊆ V, Vr = U and TVi ⊆
Vi+1, i = 0, 1, · · · , r − 1.

Take a transitive point x ∈ V0. Then Tx ∈ V1 and x 6= Tx as (X,T ) is nontrivial.
Thus (x, Tx) ⊆ E(X,T ) ⊆ SE(X,T, F ) by Corollary 5.2. By the remark of Lemma
4.7, N(V1, V0) ∩ (F − F ) 6= ∅. Hence there exist a1 = pi11

+ pi12
+ · · ·+ pi1k1

and b1 =

pj1
1
+ pj1

2
+ · · ·+ pj1

m1
such that W1 = V1 ∩ T−(a1−b1)V0 6= ∅, where 1 ≤ i11 < · · · < i1k1

and 1 ≤ j1
1 < · · · < j1

m1
. Let n1 = max{i1k1

, j1
m1
}+ 1 and F1 = FS({pi}∞i=n1

).
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Replacing V0, V1 and F by W1, V2 and F1 respectively, repeating the above dis-
cussion (as T (W1) ⊆ V2), we have that there exist a2 = pi21

+ pi22
+ · · · + pi2k2

and b2 = pj2
1

+ pj2
2

+ · · · + pj2
m2

such that W2 = V2 ∩ T−(a2−b2)W1 6= ∅, where

n1 ≤ i21 < · · · < i2k2
and n1 ≤ j2

1 < · · · < j2
m2

. Let n2 = max{i2k2
, j2

m2
} + 1 and

F2 = FS({pi}∞i=n2
).

By induction for each 2 ≤ t ≤ r there exist at = pit1
+ pit2

+ · · · + pitkt
and bt =

pjt
1
+pjt

2
+· · ·+pjt

mt
such that Wt = Vt∩T−(at−bt)Wt−1 6= ∅, where nt−1 ≤ it1 < · · · < itkt

and nt−1 ≤ jt
1 < · · · < jt

mt
. Let nt = max{itkt

, jt
mt
}+ 1 and Ft = FS({pi}∞i=nt

).
By the construction, one has

Vr ∩ T−(ar−br)Wr−1 ⊆ Vr ∩ T−(ar−br)(T−(ar−1−br−1)Wr−2) · · · ⊆ Vr ∩ T−(a−b)V0,

where a = a1 + · · · + ar, b = b1 + · · · + br. This shows that U ∩ T−(a−b)V ⊇
Vr ∩ T−(a−b)V0 ⊇ Wr 6= ∅. By the choose ai, bi, one has a, b ∈ F . Hence a − b ∈
N(U, V ) ∩ F − F . This finishes the proof of Theorem 5.5. ¤

We remark that it is known that u.p.e. (which is strictly stronger than diagonality)
implies mild mixing [HY1]. As a transitive c.p.e. system is not necessarily weak
mixing [B1], transitive c.p.e. does not imply mild mixing in general.

In ergodic theory, the notions of Kolmogorov systems and Bernoulli systems play
a great role. Thus it is a natural question how to introduce the corresponding
notions in TDS. A systematic study of topological Kolmogorov systems was started
by Blanchard [B1]. In [HY1] Huang and Ye introduced and studied the notion of
u.p.e. of order n and the notion of topological K-systems, i.e., u.p.e. of order n for
each n ≥ 2. Let (X,T ) be TDS. (X,T ) is called
• topological K-system if each (topologically) non-trivial finite open cover of X has
positive entropy;
• (topologically) full-Bernoulli if the topological entropy with respect to its each
non-trivial finite open cover and each infinite sequence is positive;
• full-scattering if if for each A = {a1 < a2 < . . .} ∈ IF and each non-trivial finite
open cover U , N(

∨n
i=1 T−aiU) →∞;

• quasi-Bernoulli if for each F ∈ IF , (X,T ) is F -s.u.p.e.
It is clear that quasi-Bernoulli implies full scattering, which implies mild mixing

[HY2].

Corollary 5.3. Let (X,T ) be TDS. Then (X,T ) is a topological K-system if and
only if (X,T ) is full-Bernoulli. Moreover the product of two full-Bernoulli systems
is again full-Bernoulli.

Proof. By the definition a full-Bernoulli system is a topological K-system. By The-
orem 5.4 the converse statement is true too. Finally, since the product of two topo-
logical K-systems is a topological K-system by [HY1], we know that the product of
two full-Bernoulli systems is again full-Bernoulli. ¤

It is well known that in ergodic theory a K-system is strongly mixing. Thus an
immediate question is that if a topological K-system is strongly mixing. The answer
is no if we do not assume minimality (see Example A in [HY2]). Recall that it is
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proved in [HY2] that a minimal full-scattering system is strongly mixing. So we
have

Theorem 5.6. Let (X,T ) be a topological K-system. If (X,T ) is minimal, then
(X,T ) is strongly mixing.

To sum up we have

topo. K = full Bernoulli
+ ↘

minimality quasi Bernoulli ⇒ full scattering ⇒ mild mixing.
⇓ ↗

strong mixing

For completeness we give a direct proof of the following result which is firstly
appeared in [S].

Theorem 5.7. Let (X,B, µ, T ) be an ergodic invertible MDS and ξ ∈ PX . If
hµ(T, ξ) > 0, then hA

µ (T, ξ) ≥ hµ(T, ξ) > 0 for any A ∈ IF .

Proof. Let A = {0 ≤ a1 < a2 < · · · }. As hµ(T, ξ) = Hµ(ξ|∨∞
i=1 T−iξ), one has

hA
µ (T, ξ) = lim supn→∞

1
n
Hµ(

∨n
i=1 T−aiξ)

= lim supn→∞
1
n

∑n
j=1 Hµ(T−ajξ|∨n

i=j+1 T−aiξ)
= lim supn→∞

1
n

∑n
j=1 Hµ(ξ|∨n

i=j+1 T aj−aiξ)
≥ lim supn→∞

1
n

∑n
j=1 Hµ(ξ|∨∞

i=1 T−iξ)
= hµ(T, ξ).

This ends the proof. ¤
Finally, we have some open problems:

Problem 1. Is a minimal u.p.e. system strongly mixing?
Problem 2. Is it true that for any IP-set F , F -null minimal system is an almost
one to one extension of a uniformly rigid system?
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