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Abstract. Let G be a graph, and f : G → G be a continuous map. Denote by
P (f), R(f) and ω(f) the sets of periodic points, recurrent points and ω-limit points
of f respectively. In this paper we show that if P (f) is closed, then ω(f) = R(f).

1. Introduction

A topological dynamical system is a pair (X, f), where X is a compact metric space
with a metric d and f is a continuous map fromX to itself. One uses N to denote the set
of the natural numbers and Z+ the non-negative integers. For x ∈ X, {fn(x) : n ∈ Z+}
is called the orbit of x and is denoted by O(x, f) . x is periodic if fn(x) = x for some
n ∈ N. x is called a recurrent point of f if for any neighborhood U of x and any
m ∈ N there exists n > m such that fn(x) ∈ U . Let ω(x) denote the set of ω-limit
points of the orbit of x (precisely, z ∈ ω(x) if and only if some subsequence of the
sequence {fn(x)} converges to z). Hence x is recurrent if and only if x ∈ ω(x). Set
ω(f) =

⋃

x∈X ω(x). x is non-wandering if for any neighborhood U of x there is some
n ∈ N such that f−n(U)∩U 6= ∅. Let P (f), R(f) and Ω(f) denote the sets of periodic
points, recurrent points and non-wandering points of f respectively.

For x, y ∈ X and ε > 0, an ε-chain of f from x to y is a finite sequence x =
x0, x1, . . . , xn = y in X with n > 0 and d(f(xi), xi+1) < ε for 0 ≤ i < n. We say that x
is chain recurrent (under f ) if for every ε > 0, there is an ε-chain from x to x. Denote
the set of all chain recurrent points of f by CR(f). For more about chain recurrence
etc. please refer to [3].

By the definitions one can easily check the following inclusion relation

(1.1) P (f) ⊂ R(f) ⊂ ω(f) ⊂ Ω(f) ⊂ CR(f).

It is easy to give an interval map f : I → I such that

P (f) ( R(f) ( ω(f) ( Ω(f) ( CR(f).

Thus, in general, no inclusion symbol “⊂” in (1.1) can be replaced by the equality “=”.

Block [2] showed that if f : I → I is an interval map and P (f) is a finite set
consisting only of fixed points, then Ω(f) = P (f). Coven and Hedlund [9] extended
this, obtaining the same conclusion from the weaker hypothesis that some power g = fn

of f simultaneously fixes all the periodic points, and they also proved that if P (f) is
closed, then P (f) = R(f). Nitecki [13] and Xiong [16] proved independently that if
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2 Graph maps whose periodic points form a closed set

the set of periodic points is closed, then every non-wandering point is periodic, i.e.
P (f) = Ω(f). Block and Franks [5] improved this result, and showed that under the
same hypotheses every chain recurrent point is periodic. That is, if P (f) is closed in
I, then P (f) = R(f) = ω(f) = Ω(f) = CR(f).

For a circle map f , Block et al [4] proved that P (f) = Ω(f) if and only if P (f)
is closed and nonempty, and Block and Franke [6] also obtained some necessary and
sufficient conditions for P (f) = CR(f). In [7, 8] Blokh constructed the “spectral”

decomposition of the sets P (f), ω(f) and Ω(f) for a graph map f , and obtained a
series of applications of the “spectral” decomposition.

In this note we will study graph maps with the sets of periodic points being closed.
Our main result is the following theorem:

Theorem 2.9. Let f : G → G be a graph map. If the set P (f) of periodic points of
f is closed in G, then ω(f) = R(f).

In addition, we will give an example to show that, for graph maps f with P (f) being
closed, if we do not put any additional condition, then the conclusion ω(f) = R(f) in
Theorem 2.9 can not be strengthened to Ω(f) = R(f) or ω(f) = P (f).

2. Graph maps whose periodic points form a closed set

First recall some notions about graphs. A metric space X is called an arc (resp. an
open arc, an circle ) if it is homeomorphic to the interval [0, 1] (resp. the open interval
(0, 1), the unit circle S1). Let A be an arc and h : [0, 1] → A be a homeomorphism.
The set of endpoints of A is ∂A = {h(0), h(1)}. A metric space G is called a graph
if there are finitely many arcs A1, . . . , An (n ≥ 1) in G such that G =

⋃n

i=1Ai and
Ai ∩ Aj = ∂Ai ∩ ∂Aj for all 1 ≤ i < j ≤ n.

Let G be a graph. The set V (G) of vertexes of G is a given finite subset of G such
that: (1) every connected component E of G − V (G) is an open arc, and the closure
E of E is an arc; (2) for any circle C in G, C ∩ V (G) contains at least three points.
Every connected component E of G− V (G) is called an edge of G. A continuous map
from a graph to itself is called a graph map.

The following lemma is well known:

Lemma 2.1. Let (X, f) be a topological dynamical system. Then f(R(f)) ⊂ R(f),
and f−1(x) ∩ ω(f) 6= ∅ for any x ∈ ω(f).

Let E be an edge of a graph G. An ordering ≺ on E is called a natural ordering
if there is a homeomorphism h : (0, 1) → E such that h(r) ≺ h(s) if and only if
0 < r < s < 1. Denote by ≻ the inverse ordering of ≺. From Lemma 2.1 we obtain
immediately

Lemma 2.2. Let f : G→ G be a graph map. If ω(f) −R(f) 6= ∅, then there exist an

edge E of G with a natural ordering ≺ and points {w0, w1, . . .} ⊂ E ∩
(

ω(f) − R(f)
)

such that wn ∈ O(wn+1, f) for all n ≥ 0, and

w0 ≺ w1 ≺ w2 ≺ . . . or w0 ≻ w1 ≻ w2 ≻ . . . .

Let X be a metric space, f : X → X be a continuous map and A,A′ be two arcs in
X. If there exist a subarc A0 of A and n ∈ N such that fn(A0) = A′, then we write

A
f

=⇒ A′. The following lemma is well known.
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Lemma 2.3. Let X be a metric space, f : X → X be a continuous map and A,A′ be

two arcs in X. If A
f

=⇒ A′ f
=⇒ A, then P (f) ∩ A 6= ∅.

The following lemma is the key result of the paper. With the help of this lemma,
we can use the main result of [5] to get Theorem 2.9.

Lemma 2.4. Let f : G→ G be a graph map. If ω(f) −R(f) 6= ∅, then there exist an
arc A ⊂ G and m ∈ N such that

fm(A) ⊂ A and A ∩
(

ω(f) − R(f)
)

6= ∅.

Proof. By Lemma 2.2, there is an edgeE ofG with a natural ordering ≺ and {w′, w, w′′} ⊂

E ∩
(

ω(f) − R(f)
)

such that w ∈ O(w′, f), w′′ ∈ O(w, f) and

w′ ≺ w ≺ w′′ or w′′ ≺ w ≺ w′.

For the convenience of statement, we may assume that E = (0, 1) with endpoints
{0, 1} ⊂ V (G). Suppose that w = fm1(w′) and w′′ = fm2(w) for some m1, m2 ∈ N.
Take open intervals J ′, J and J ′′ in E = (0, 1) such that w′ ∈ J ′, w ∈ J , w′′ ∈ J ′′,

fm1(J ′) ⊂ J, fm2(J) ⊂ J ′′, J ′ ∩ J = J ∩ J ′′ = ∅,

(J ′ ∪ J ∪ J ′′) ∩ R(f) = ∅, (J ′ ∪ J ∪ J ′′) ∩ O(w′, f) = {w′, w, w′′}.

0 w′ w w′′ 1

J ′ J J ′′

fm1 fm2

Figure 1. The case w′ ≺ w ≺ w′′

Take {x′i : i ∈ N} ⊂ J ′, {xi : i ∈ N} ⊂ J and {x′′i : i ∈ N} ⊂ J ′′ satisfying

(C.1) (x′1, x
′
2, x

′
3, . . .), (x1, x2, x3, . . .) and (x′′1, x

′′
2, x

′′
3, . . .) are strictly monotonic se-

quences in E = (0, 1), and |x′i − w′| → 0 as i→ ∞;

(C.2) fm1(x′i) = xi and fm2(xi) = x′′i for all i ∈ N;

(C.3) For each i ∈ N there is a ki > m1 +m2 such that fki(x′i) = x′i+1.

For convenience, we may assume that the middle sequence (x1, x2, . . .) is a strictly
increasing sequence, and then we write

(2.1)

{

J1 = J ′′, w1 = w′′, and yi = x′′i for all i ∈ N, if w′ < w < w′′;
J1 = J ′, w1 = w′, and yi = x′i for all i ∈ N, if w′′ < w < w′.

For each i ∈ N, let

(2.2) ni =

{

ki −m2, if w′ < w < w′′;
ki +m1, if w′′ < w < w′.

It follows from (C.2), (C.3) and (2.2) that

(2.3) fni(yi) = xi+1, for all i ∈ N.



4 Graph maps whose periodic points form a closed set

Let g = fk1. Then g(x1) = x2 > x1. Let

K0 = [x1, x2], Ki =

i
⋃

λ=0

gλ(K0) for all i ∈ N, and K∞ =

∞
⋃

i=0

Ki.

Then Ki and K∞ are connected subsets of G, Ki is closed and g(K∞) ⊂ K∞, g(K ∞) ⊂
K ∞.

0 1a x1 x2

K0

x3 xβ w b

w1 yβ−1 y2 y1

J J1g = fk1 fk2

fn2

fn1

Figure 2.

Claim 1. If there are c ∈ (x2, 1] and n ≥ 1 such that c 6∈ Kn, then Kn ⊂ [x1, c), and
for each i ∈ {1, 2, . . . , n},

(2.4) t < gi(t) < c for all t ∈ [x1, x2].

Proof of Claim 1. Note that

[x1, x2]
⋂

(

∞
⋃

i=1

Fix(gi)

)

= [x1, x2] ∩ P (g) ⊂ J ∩ R(f) = ∅.

It follows from g(x1) > x1 that (2.4) holds for i = 1. If n ≥ 2 and (2.4) holds for some
i = i0 ∈ {1, 2, . . . , n − 1}, then from x1 < x2 < gi0(x2) = gi0+1(x1) < c we see that
(2.4) also holds for i = i0 + 1. Thus (2.4) holds for all i ∈ {1, 2, . . . , n}, and hence
Kn ⊂ [x1, c). This completes the proof of Claim 1.

Suppose that the endpoints of J are a and b with a < b, that is, J = (a, b).
Claim 2. [x1, b] ⊂ K∞.
Proof of Claim 2. If [x1, b] 6⊂ K∞, then there is c ∈ (x2, , b] such that c 6∈ K∞. By
Claim 1. K ∞ is a closed interval contained in [x1, c]. It follows from g(K ∞) ⊂ K ∞

that
R(f) ∩ J ⊃ Fix(g) ∩ J ⊃ Fix(g) ∩K ∞ 6= ∅.

But this will lead to a contradiction. Thus Claim 2. holds.

Claim 3. There exist α ∈ N and a closed interval [v1, v2] ⊂ [x1, x2) such that gα(v1) =
gα(x1) ∈ [x2, w), gα(v2) = w, and gα([v1, v2]) = [gα(x1), w].

Proof of Claim 3. By Claim 2. there exists α ∈ N such that w ∈ Kα and w 6∈ Kα−1.
Hence, by (2.4), x2 ≤ gα(x1) = gα−1(x2) < w. Let v2 = min{t ∈ [x1, x2] : gα(t) = w},
and let v1 = max{t ∈ [x1, v2) : gα(t) = gα(x1)}. Then [v1, v2] satisfies the conditions in
Claim 3.
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Claim 4. Let α and [v1, v2] be as in Claim 3. Take an integer β ≥ 2 such that

xβ ∈ [gα(x1), w). Let ψ = fkβ , L0 = [xβ , w], Li =
⋃i

λ=0 ψ
λ(L0) for each i ∈ N,

L∞ =
⋃∞

i=0 Li, and let yi be defined as in (2.1). Then L∞ is a connected set contained
in [xβ, yβ−1).

Proof of Claim 4. It follows from ψ(xβ) = xβ+1 ∈ (xβ , w) that L0 ∩ ψ(L0) 6= ∅. Thus
each Li and L∞ are connected subsets of G.

If yβ−1 ∈ L∞, then there exist j ∈ N and z ∈ L0 such that ψj(z) = yβ−1. Write
µ = jkβ + nβ−1. By (2.3), we have fµ(z) = fnβ−1ψj(z) = fnβ−1(yβ−1) = xβ. Since
fµ(w) 6∈ J , and fµ(L0) is a connected set containing xβ and fµ(w), there exists a closed
subinterval L′

0 of L0 such that

fµ(L′
0) = K0 or fµ(L′

0) = L0.

This means that

(2.5) L0
f

=⇒ K0 or L0
f

=⇒ L0.

By Claim 3. we haveK0
f

=⇒ L0. Hence, by Lemma 2.1, from (2.5) we get P (f)∩L0 6= ∅.
But this contradicts that P (f) ∩ J = ∅. Thus it must hold that yβ−1 6∈ L∞. Similar
to Claim 1. from yβ−1 6∈ L∞ we can derive L∞ ⊂ [xβ, yβ−1). The proof of Claim 4. is
completed.

we now put A = L∞. Then A ∩
(

ω(f) −R(f)
)

⊃ {w} 6= ∅. By Claim 4. A is a

closed interval contained in [xβ, yβ−1]. Let m = kβ. Then fm(A) = ψ(A) ⊂ A. This
completes the proof of Lemma 2.4. �

Lemma 2.5. Let ϕ : [0, 1] → [0, 1] be an interval map. If the set P (ϕ) of periodic

points of ϕ is closed, then ω(ϕ) = R(ϕ).

Proof. If P (ϕ) is closed, then by the main result of [5] one has CR(ϕ) = P (ϕ). Noting

that P (ϕ) ⊂ ω(ϕ) ⊂ CR(ϕ) and P (ϕ) ⊂ R(ϕ) ⊂ CR(ϕ), we obtain that ω(ϕ) =

R(ϕ). �

Proposition 2.6. Let f : G → G be a graph map. If ω(f) − R(f) 6= ∅, then P (f) is
not closed.

Proof. Let the arc A ⊂ G and m ∈ N be as in Lemma 2.4. Let ϕ = fm|A : A → A.
Then ϕ can be regarded as an interval map, and we have P (ϕ) = P (fm)∩A = P (f)∩A,
R(ϕ) = R(fm) ∩ A = R(f) ∩ A, and ω(ϕ) ⊂ ω(fm) ∩A = ω(f) ∩A. Since A ∩G−A

is a finite set, it is easy to check that R(ϕ) = R(f) ∩ A and ω(ϕ) = ω(f) ∩ A. Thus,

by Lemma 2.4, ω(ϕ) − R(ϕ) 6= ∅, and hence by Lemma 2.5, P (ϕ) is not closed. This
with P (ϕ) = P (f) ∩A implies that P (f) is not closed. �

The following two lemmas are known.

Lemma 2.7. ([12, Corollary 2]). Let f : G→ G be a graph map. Then ω(f) is closed

in G, and hence R(f) ⊂ ω(f).

Lemma 2.8. ([11, Corollary 2.4]). Let f : G → G be a graph map. If P (f) is closed
in G, then R(f) is closed.
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In fact, Sharkovskii [15] has shown that Lemma 2.7 is true for interval maps. In the
proof of [7, Theorem 4], Blokh pointed out that by the same methods as [15] one can
easily prove that Lemma 2.7 is true for graph maps. In addition, by means of the main
result of [10] one can also give a simple proof of Lemma 2.7.

From Proposition 2.6, Lemma 2.7 and Lemma 2.8, we obtain the following theorem
readily, which is the main result of this paper.

Theorem 2.9. Let f : G→ G be a graph map. If the set P (f) of periodic points of f
is closed in G, then ω(f) = R(f).

The following example shows that Theorem 2.9 cannot be strengthened to be Ω(f) =
R(f) or ω(f) = P (f).

Example 2.10. Now we construct a graph map of which the set of periodic points is
closed. Let S1 = {e2πit ∈ C : t ∈ R} be the unit circle in the complex plane C, and
let G1 = S1 ∪ [−1, 1] be a graph in C. Note that the interval [−1, 1] ⊂ R ⊂ C. Define
f1 : G1 → G1 by







f1(e
2πit) = e4πit, if t ∈ [0, 1/2];

f1(e
2πit) = 1, if t ∈ [1/2, 1];

f1(r) = eπi(1−|r|), if r ∈ [−1, 1].

It is easy to see that f1 is continuous, and

P (f1) = R(f1) = ω(f1) = {1} ( Ω(f1) = {−1, 1}.

Let G2 = {4 + z : z ∈ S1} be the circle in C with center 4 and radius 1, and let
f2 : G2 → G2 be an irrational rotation. Then (for example see [1, 3, 14])

P (f2) = ∅ ( R(f2) = ω(f2) = Ω(f2) = G2.

Let G = G1 ∪ [1, 3] ∪ G2 (see Figure 3.). Define a continuous map f : G → G such
that f(z) = fi(z) if z ∈ Gi with i ∈ {1, 2}; f(r) = 2r−1 if r ∈ [1, 2]; and f([2, 3]) ⊂ G2.
Then

P (f) = P (f) = P (f1) = {1} ( R(f) = ω(f) = {1} ∪G2 ( Ω(f) = {−1, 1} ∪G2.

−1 0

1

−1

1 2 3 4 5 x

y

G1 G2

G

Figure 3.

From Example 2.10 we see that in general for graph maps the conclusion in Theorem
2.9 cannot be strengthened to be Ω(f) = R(f) or ω(f) = P (f).
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