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Abstract. In this paper proximity, distality and recurrence are studied via
Furstenberg families. A new proof of some classical results on the conditions
when a proximal relation is an equivalence one is given. Moreover, for a family
F , F-almost distality and F-semi-distality are defined and characterized. As an
application a new characterization of PI-flows is obtained.

1. Introduction

Throughout this paper a topological dynamical system (TDS for short) is a pair
(X,T ), where X is a nonvoid compact metric space with a metric d and T is a
continuous surjective map from X to itself. We use Z to denote the set of integers,
Z+ the set of non-negative integers and N the set of natural numbers. Let TransT =
{x : ωT (x) = X}, where ωT (x) is the ω-limit set of x. Say (X,T ) is transitive if
TransT 6= ∅. In fact, TransT is a dense Gδ set when it is not empty. Say (X,T )
is minimal if X is the only non-empty closed and invariant subset, and x ∈ X is a
minimal point if it belongs to some minimal subsystem of X. Sometimes we need
to consider the case when the phase space is an arbitrary compact Hausdorff space,
and in this case we define minimality in the same way.

Classically, one way of studying a TDS is to consider the asymptotic behav-
ior of pairs of points. A pair (x, y) ∈ X × X = X2 is said to be proximal if
lim inf
n→+∞

d(T nx, T ny) = 0 and the one with lim
n→+∞

d(T nx, T ny) = 0 is said to be as-

ymptotic. If in addition x 6= y, then the pair (x, y) is said to be proper. The
sets of proximal pairs and asymptotic pairs of (X,T ) are denoted by P (X,T ) and
Asym(X,T ) respectively. P (X,T ) is a reflexive, symmetric, T -invariant relation,
but in general not transitive or closed [3, 4, 5].

A pair (x, y) ∈ X2 which is not proximal is said to be distal. A pair is a Li-Yorke
pair if it is proximal but not asymptotic. x ∈ X is a recurrent point if there is
an increasing sequence {ni} of N with T nix → x. A pair (x, y) ∈ X2 \ ∆X is a
strong Li-Yorke pair if it is proximal and is a recurrent point of T × T . It is easy
to check that a strong Li-Yorke pair is a Li-Yorke pair. A system without proper
proximal pairs (Li-Yorke pairs, strong Li-Yorke pairs) is called distal (almost distal,
semi-distal respectively). It is clear that a distal system is almost distal and an
almost distal system is semi-distal.
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2 Proximity and distality via Furstenberg families

A beautiful characterization of distality was given by R. Ellis using so-called
enveloping semigroup. Given a TDS (X,T ) its enveloping semigroup E(X,T ) is
defined as the closure of the set {T n : n ∈ Z+} in XX (with its compact, usually
non-metrizable, pointwise convergence topology). Ellis showed that a TDS (X,T )
is distal iff E(X,T ) is a group iff every point in X2 is minimal [9]. The notion
of almost distal was first introduced by Blandchard etc. [7]. Let the adherence

semigroup H(X,T ) be limsup{T n} =
⋂∞

k=1 {T n : n = k, k + 1, · · · } ⊂ XX . They
showed that a TDS (X,T ) is almost distal iff (H(X,T ), T ) is minimal iff every ω-
limit set in (X2, T × T ) is minimal. Recently, Akin etc. studied distality concepts
for Ellis actions [1]. They defined a system without strong Li-Yorke pairs to be
semi-distal, i.e. every (x, y) ∈ X2 which is both proximal and recurrent is in the
diagonal. They gave an elegant characterization of semi-distality via the enveloping
semigroup, namely they showed that a TDS is semi-distal iff every idempotent in
H(X,T ) is minimal iff every recurrent point in (X2, T × T ) is minimal.

In this paper we investigate the proximal relation from the viewpoint of Fursten-
berg families and give a new proof of some classical results on the conditions when
a proximal relation is an equivalence one. By using the family notion our proofs
become simpler and clearer. Moreover, family machinery is applied to describe fam-
ily versions of distality, almost distality and semi-distality. Different notions are
unified by this family viewpoint, and in particular, we show that a minimal PI-flow
can be viewed as some kind of semi-distal one. By applying the structure theorems
of some special minimal systems, we can give a negative answer to a conjecture by
Blanchard etc. [7] on the structure of minimal almost distal systems.

Acknowledgement: I would like to thank Prof. X.D. Ye and W. Huang for their
helpful suggestions concerning this paper. I would also like to thank the referee for
a careful reading and helpful suggestions.

2. Preliminary

Firstly we introduce some notations related to a family (for details see [2, 10]).
Let P = P(Z+) be the collection of all subsets of Z+. A subset F of P is a family,
if it is hereditary upwards, i.e. F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F . A family F is
proper if it is a proper subset of P , i.e. neither empty nor all of P . It is easy to see
that a family F is proper if and only if Z+ ∈ F and ∅ /∈ F . Any subset A of P can
generate a family [A] = {F ∈ P : F ⊃ A for some A ∈ A}. If a proper family F is
closed under intersection, then F is called a filter. For a family F , the dual family
is

(1) kF = {F ∈ P|F ∩ F ′ 6= ∅ for all F ′ ∈ F}.
It is easy to see that kF is a family, proper if F is. Clearly, k(kF) = F and F1 ⊂ F2

implies kF2 ⊂ kF1. For families F1 and F2, let F1 ·F2 = {F1∩F2|F1 ∈ F1, F2 ∈ F2}.
Thus we have F1 ∪F2 ⊂ F1 · F2. It is easy to check that F is a filter iff F = F · F .

For i ∈ Z and F ⊆ Z+ let F + i = {j + i : j ∈ F} ∩ Z+. A family F is called
translation ± invariant if for every i ∈ Z+, F ∈ F we have F ± i ∈ F . A family F
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is called translation invariant if for every i ∈ Z+, F ∈ F iff F − i ∈ F . For a family
F let

(2) τF = {F ∈ P :
n⋂

j=1

(F − ij) ∈ F for n ∈ N and each {i1, i2, · · · , in} ⊂ Z+}.

F is a thick family if τF = F , and it is easy to see τF is the largest thick family
contained in F . By the definition a filter F is −translation invariant iff it is thick.

Now let us recall some important sets and families. Let B the family of all infinite
subsets of Z+. It is easy to see that B is the largest proper translation invariant
family and its dual kB, the family of cofinite subset, is the smallest one. A subset F
of Z+ is thick if F ∈ τB, equivalently, F is thick if and only if it contains arbitrarily
long runs of positive integers. Each element of kτB is said to be syndetic or relatively
dense. F is syndetic if and only if there is N such that {i, i + 1, · · · , i + N}∩F 6= ∅
for every i ∈ Z+. A set in τkτB is called replete or thickly syndetic. F ∈ τkτB if
and only if for every N the positions where length N runs begin form a syndetic
set. The set in kτkτB is called big or piecewise syndetic. F ∈ kτkτB if and only
if it is the intersection of a thick set and a syndetic set. All of these families are
translation invariant, and τkτB is a filter.

A family F is full if F · kF ⊂ B. If F is full then kB ⊂ F ⊂ B. If F is a filter,
then kB ⊂ F implies F is full.

Let (X,T ) be a dynamical system and A,B ⊂ X. We define the hitting time set

(3) NT (A,B) = N(A,B) = {n ∈ Z+ : T n(A) ∩B 6= ∅}.
Especially, N(x,B) = {n ∈ Z+ : T nx ∈ B}.

Now we generalize the notion of ω-limit set. Let (X,T ) be a TDS and F be a
family. Define

(4) ωF(T, x) = ωFT (x) =
⋂

F∈kF
T F (x)

where T F =
⋃{T n|n ∈ F}.

By the definition y ∈ ωFT (x) iff N(x, U) ∈ F for every neighborhood U of y.
When F = B, it is the usual ω-limit set, i.e. ωBT (x) = ωT (x). It is easy to see
that when F is translation + invariant ωF(T, x) is a closed invariant subset of X,
i.e. TωF(T, x) ⊆ ωF(T, x).

Now we consider the Stone−C̆ech compactification of the semigroup Z+ with the
discrete topology. The set of all ultrafilters on Z+ is denoted by βZ+. Let A ⊂ Z+

and define A = {p ∈ βZ+ : A ∈ p}. It is easy to see that A ∩ B = A ∩B, A ∪ B =
A ∪B, where A,B ⊂ Z+. The set {A : A ⊂ Z+} forms a basis for the open sets
(and also a basis for closed sets) of βZ+. Under this topology, βZ+ is a compact
Hausdorff space. Define j : Z+ → βZ+ by j(t) = {A ⊂ Z+ : t ∈ A}. Then (j, βZ+)

is the maximum compactification of Z+, called Stone − C̆ech compactification (for
details see [4, 9]).
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For F ⊂ Z+ the hull of F is h(F ) = F = {p ∈ βZ+ : F ∈ p}. For the family F ,
the hull of F is defined by

(5) h(F) =
⋂

F∈F
h(F ) =

⋂
F∈F

F = {p ∈ βZ+ : F ⊆ p} ⊆ βZ+.

Given A ⊂ βZ+ define the kernel of A by

(6) K(A) =
⋂
p∈A

p .

K(A) is a filter on Z+. From the operators h and K, we obtain a one-to-one
corresponding between the set of filters on Z+ and the set of closed subsets of βZ+

[9, 12, 2].

Let X be a compact metric space and S a semigroup. Let Φ : S ×X → X be an
action, i.e. for any p, q ∈ S, Φp ◦ Φq = Φpq. For (p, x) ∈ S ×X, denote

(7) px = Φ(p, x) = Φp(x) = Φx(p).

Φ# : S → XX is defined by p 7→ Φp. Hence px = Φ#(p)(x). An Ellis semigroup S
is a compact Hausdorff semigroup such that the right translation map Rp : S −→ S,
q 7−→ qp is continuous for every p ∈ S. An Ellis action of an Ellis semigroup S on
a space X is a map Φ : S ×X → X which is an action such that the adjoint map
Φ# is continuous, or equivalently, Φx is continuous for each x ∈ X.

Now let (X,T ) be a TDS. Then Φ : Z+×X → X, (n, x) 7→ T nx is an action and it
can be extended to an Ellis action Φ : βZ+ ×X → X. Hence we have a continuous
map Φ# : βZ+ → XX .

Define

(8) H(F) = H(X,F) = Φ#(h(F)) ⊂ XX .

It is easy to see that for a family F , H(F) 6= ∅ iff F has finite intersection property.

Proposition 2.1. Let (X,T ) be a TDS and F be a filter. Then

(1) H(F) =
⋂

F∈F
T F ⊆ XX .

(2) ωkFT (x) = H(F)x.

Proof. (1). First we show that Φ#(
⋂

F∈F
F ) =

⋂
F∈F

Φ#(F ).

It is obvious that Φ#(
⋂

F∈F
F ) ⊆ ⋂

F∈F
Φ#(F ). Now let p ∈ ⋂

F∈F
Φ#(F ), i.e. p ∈

Φ#(F ) for every F ∈ F . Thus (Φ#)−1(p)∩F 6= ∅ for any F ∈ F . Since F has finite
intersection property, so does {(Φ#)−1(p) ∩ F : F ∈ F}. As βZ+ is compact, we
have

⋂
F∈F

((Φ#)−1(p) ∩ F ) 6= ∅, i.e. (Φ#)−1(p) ∩ ⋂
F∈F

F 6= ∅. That is p ∈ Φ#(
⋂

F∈F
F ).

Now we show Φ#(F ) = T F . First by the continuity of Φ# we have Φ#(F ) ⊆
Φ#(F ) = T F . As Φ#(F ) is compact, it is closed. And hence we have T F =

Φ#(F ) ⊆ Φ#(F ) = Φ#(F ). So, it follows that Φ#(F ) = T F .
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By the above two equations we have

H(F) = Φ#(h(F)) = Φ#(
⋂

F∈F
F ) =

⋂
F∈F

Φ#(F ) =
⋂

F∈F
(T F ) ⊆ XX .

(2). Similar to (1), we have

H(F)x = Φ#(h(F))x = Φx(h(F)) = Φx(
⋂

F∈F
F ) =

⋂
F∈F

(T F x) = ωkFT (x).

¤
Remark 2.2. Let (X,T ) be a TDS. Then

(1) E(X,T ) = H([Z+]) = Φ#(βZ+) is the enveloping semigroup of (X,T ).
(2) H(X,T ) = H(kB) = Φ#(β∗T ), where β∗Z+ = βZ+ \ Z+, is the adherence

semigroup of T .

Let π : (X,T ) → (Y, S) be a factor map. Then there is a unique continuous
semigroup homomorphism φ : E(X,T ) → E(Y, S) such that π(px) = φ(p)π(x),
x ∈ X, p ∈ E(X,T ). We can get φ as follows. Let φ : {T n : n ∈ Z+} → {Sn : n ∈
Z+}, T n 7→ Sn, where {T n : n ∈ Z+}, {Sn : n ∈ Z+} with the topology inherited
from XX and Y Y . Then φ is uniformly continuous. And hence has a continuous
extension, still called φ, to a continuous map of E(X,T ) to E(Y, S). φ has the
required properties. That is, we have:

Proposition 2.3. Let (X,T ) and (Y, S) be TDS. If π : (X,T ) → (Y, S) be a factor
map, then there is a unique continuous semigroup homomorphism φ : E(X,T ) →
E(Y, S) such that π(px) = φ(p)π(x), x ∈ X, p ∈ E(X,T ). Moreover, for any filter
F , φ(H(X,F)) = H(Y,F).

Let (X,T ) be a TDS and I be any nonempty set. Let XI be the product space.
And we define T : XI → XI by T (xi)i∈I = (Txi)i∈I . In the case I is a finite set,
denote Xn = X ×X × · · · ×X︸ ︷︷ ︸

n times

and T (n) = T × T × · · · × T︸ ︷︷ ︸
n times

. The following result

is not difficult to check (similar to [9, Proposition 3.9.]).

Proposition 2.4. Let (X,T ) be a TDS and I be any nonempty set. Then there is
isomorphism ψ : E(X,T ) ∼= E(XI , T ). Moreover, for any filter F , ψ : H(X,F) ∼=
H(XI ,F).

For a semigroup the element u with u2 = u is called idempotent. Ellis-Namakura
Theorem says that for any Ellis semigroup E the set Id(E) of idempotents of E
is not empty [9]. A non-empty subset I ⊂ E is a left ideal (resp. right ideal) if it
EI ⊆ I (resp. IE ⊆ I). I is said to be an ideal if it is both left and right ideal. A
minimal left ideal is the left ideal that does not contain any proper left ideal of E.
Obviously every left ideal is a semigroup and every left ideal contains some minimal
ideal.

Let (X,T ) be a TDS. Then (XX , T ) is a system and (E(X,T ), T ) is its subsystem.
A subset I ⊆ E(X,T ) is closed left ideal of E(X,T ) iff (I, T ) is a subsystem of
(E(X,T ), T ). And I is minimal left ideal of E(X,T ) iff (I, T ) is a minimal [4, 9].
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Proposition 2.5. If F is a filter, then h(F) and H(F) are closed nonempty sets.
And if in addition F is thick (equivalently, it is translation −invariant), then h(F)
(resp. H(F)) is a closed left ideal of βZ+ (resp. E(X,T )).

Proof. Recall the addition in βZ+ is

p + q = {A ⊆ Z+ : {A− n ∈ q} ∈ p},
where p, q ∈ βZ+. For each i ∈ Z+ we denote by i∗ the principal ultrafilter {A ⊆
Z+ : i ∈ A}.

Now we show that i∗ + p ∈ h(F) for any i ∈ Z+ and p ∈ h(F). First it is easy to
check that i∗ + p = {A ⊆ Z+ : A − i ∈ p}. By the definition of h(F), p ∈ h(F) iff
F ⊆ p. Since F is translation −invariant, for any A ∈ F we have A − i ∈ F ⊆ p.
Hence F ⊆ i∗ + p, i.e. i∗ + p ∈ h(F) and Z+ + h(F) ⊆ h(F). Since the operation
+ is right-continuous operation on βZ+ and h(F) is closed, βZ+ + h(F) ⊆ h(F).

The conclusion concerning H(F) follows from H(F) = Φ#(h(F)). ¤

We say that x F-adheres to B if for any neighborhood U of B, N(x, U) ∈ F [2]. It

is easy to see if B is closed then x F adheres to B iff for any F ∈ kF , T F (x)∩B 6= ∅.
And x F -adheres to y iff y ∈ ωFT (x).

Lemma 2.6. Let (X,T ) be a TDS , B ⊆ X be closed and F be a proper family.
Then

(1) If x F-adheres to B, then ωkFT (x) ⊆ B.
(2) If F is a filter, then x kF-adheres to B iff ωkFT (x) ∩ B 6= ∅. And x F-

adheres to B iff ωkFT (x) ⊂ B.
(3) A point x does not F-adhere to B iff there is some closed B′ separated from

B such that x kF adheres to B′. Equivalently, x F- adheres to B iff for any
closed set B′ such that x kF-adheres to B′ we have B ∩B′ 6= ∅.

Proof. (1). If not, then there is some y ∈ ωkFT (x) \B. Since B is closed, there are
disjoint opene sets U, V which are neighborhoods of y and B respectively. But since
N(x, U) ∈ kF and N(x, V ) ∈ F , we have U ∩ V 6= ∅. A contradiction.

(2). Assume x kF -adheres to B. Then T F x ∩ B 6= ∅ for each F ∈ F . Since F is

a filter, {T F x ∩ B : F ∈ F} has finite intersection property. Hence ωkFT (x) ∩ B =⋂
F∈F

T F x ∩B 6= ∅. The converse is easy.

Now assume ωkFT (x) ⊂ B. Let U be any neighborhood of B. Then
⋂

F∈F
T F x ⊆

B ⊆ U . As F is a filter, we have some F ∈ F such that T F x ⊆ U . Hence x
F -adheres to B. The converse follows from (1).

(3) If x does not F -adhere to B, then there is some F ∈ kF such that T F x∩B = ∅.
It is easy to see that x kF - adheres to T F x. Conversely, suppose B′ is closed and
separated from B such that x kF -adheres to B′. Let U, V be the neighborhoods
of B, B′ and U ∩ V = ∅. Hence N(x, U) ∩ N(x, V ) = ∅. Since N(x, V ) ∈ kF ,
N(x, U) 6∈ F . That is, x does not F -adhere to B. ¤
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A point x ∈ X is said to be F-recurrent if x ∈ ωFT (x). A point is said to be
an F-transitive point if ωFT (x) = X. We denote the set of all F -transitive points
by TransF(X). For a system (X,T ) if TransF(X) 6= ∅, then (X,T ) is said to F-
transitive. When F = B we omit F . Let A ⊆ X, the closure of the union of minimal
subsets of A is called the mincenter of A. We can find the following results in [2],
but the proofs we offer is different.

Proposition 2.7. Let (X,T ) be TDS, x ∈ X and B ⊆ X be closed.

(1) x B-adheres to B iff ωT (x) ∩B 6= ∅.
(2) x kB-adheres to B iff ωT (x) ⊆ B.
(3) x τB-adheres to B iff B contains some invariant subset of ωT (x) iff B con-

tains some minimal subset of ωT (x).
(4) x kτB-adheres to B iff B intersect any minimal subset of ωT (x).
(5) x τkτB-adheres to B iff B contains the mincenter of ωT (x).
(6) x kτkτB-adheres to B iff B intersect the mincenter of ωT (x).

Proof. (1) and (2) follow from Lemma 2.6-(2).
(3) Suppose x τB-adheres to B. Then there is a sequence {an} ⊆ Z+ such that

T [an,an+n]x ⊂ B 1
n
, where Bε = {y : d(y, B) < ε}. Let z = limn→∞ T anx (take

subsequence if necessary). Then Orb(z, T ) ⊆ B and Orb(z, T ) is invariant. The
converse is easy.

(4) It follows from Lemma 2.6-(3).
(6) We show for any piecewise syndetic set F , there is some minimal point in

T F x. Let K = T F x. Since F is piecewise syndetic, there is syndetic set F ′ such
that for any n ∈ N there is some an ∈ N such that an + (F ′ ∩ [0, n]) ⊂ F . Let
r be the minimal number of F ′. Then T an+r ∈ K. Let z = limn→∞ T an+rx (take
subsequence if necessary). Then T F ′−rz ⊆ K.

Let M be a bound on the gaps of F ′. Then

Orb(z) = T Z+z ⊆
M⋃
i=0

T iK.

Let Y be a minimal subset of Orb(z). We now show Y ∩ K 6= ∅. Let y ∈ Y and
ni → ∞ such that T niz → y. We can assume there is some m ∈ [0,M ] such that
T ni+mz ∈ K. Hence Tmy = lim T ni+mz ∈ K. So Tmy ∈ Y ∩K.

By this fact it is easy to see if x kτkτB-adheres to B, then B intersects the
mincenter of ωT (x). Now we show the converse. Assume that x does not kτkτB-
adhere to B. By Lemma 2.6-(3) there is some closed set B′ such that B ∩ B′ = ∅
and x τkτB-adheres to B′. Let U ′ and U be the disjoint neighborhoods of B′ and B.
then F = N(x, U ′) ∈ τkτB. By the fact we proved above there is a minimal point

in T F x. But T F x∩B = ∅. This contradicts the fact that B intersect the mincenter
of ωT (x).

(5) It follows from (6) and Lemma 2.6-(3). ¤
By Proposition 2.7, ωkτBT (x) = ∅ unless ωT (x) contains a unique minimal subset

M , in which case ωkτBT (x) = M . And ωkτkτBT (x) is the mincenter of ωT (x).
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Corollary 2.8. Let (X,T ) be a TDS and x ∈ X. Then

(1) x is τB-recurrent iff x is a fixed point.
(2) x is kτB-recurrent iff x is minimal point.
(3) x is kτkτB-recurrent iff x is recurrent and the minimal points of ωT (x) is

dense in ωT (x).

3. Proximity relation

In this section for a family F the notion of F -proximal relation is introduced.
Basic properties of F -proximal relation are discussed, and a new proof when the
proximal relation is an equivalence one is presented. First we start with the definition
of F -proximal relation.

Definition 3.1. Let (X,T ) be a TDS and x, y ∈ X.

(1) Let S ⊂ Z+. (x, y) is said to be S-proximal if lim inf
S3n→∞

d(T nx, T ny) = 0. (x, y)

is said to be S-asymptotic if lim
S3n→∞

d(T nx, T ny) = 0. (x, y) is said to be S-

distal if it is not S-proximal. We denote the set of all S-proximal pairs (resp.
S-asymptotic pairs, S-distal pairs) by PS(X,T ) (resp. AS(X,T ), DS(X,T )).

(2) Let F be a family. (x, y) ∈ X2 is called F -proximal if (x, y) F-adheres to
∆X , i.e. for every ε > 0, we have N((x, y), ∆ε) ∈ F , where ∆ε = {(x, y) ∈
X2 : d(x, y) < ε}. We denote the set of all F-proximal pairs by PF(X,T ) or
PF .

Remark 3.2. (1) It is easy to see that (x, y) is F-proximal iff for every F ∈ kF ,

(T × T )F (x, y) ∩∆X 6= ∅ iff (x, y) ∈ PF (X,T ) for any F ∈ kF . And

PF(X,T ) = PF =
⋂
ε>0

⋃
F∈F

⋂
n∈F

(T × T )−n∆ε =
⋂
ε>0

⋂

F∈kF
(T × T )−F ∆ε.

From this we can see P = PB is a Gδ set.
(2) By Proposition 2.1 and Lemma 2.6, if F is a filter then (x, y) is kF-proximal

iff there is p ∈ H(F) such that px = py. And (x, y) is F-proximal iff for
every p ∈ H(F), px = py. Take F = kB, then (x, y) is proximal iff (x, y) is
B proximal iff there is p ∈ H(kB) such that px = py. (x, y) is asymptotic iff
(x, y) is kB proximal iff px = py for every p ∈ H(kB).

Proposition 3.3. Let (X,T ) be TDS and F be a thick filter. Then the following
are equivalent:

(1) (x, y) ∈ PkF .
(2) px = py for some p ∈ H(F).
(3) There is some minimal left ideal I contained in H(F) such that px = py for

each p ∈ I.
If in addition (X,T ) is minimal then (1)− (4) are equivalent

(4) There is some minimal idempotent u of H(F) such that y = ux.

Proof. (1) ⇒ (2): Assume (x, y) ∈ PkF . Then ωkF(T, (x, y)) ∩∆X 6= ∅. So there is
some p ∈ H(F) such that px = py.
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(2) ⇒ (3): Assume px = py for some p ∈ H(F). Then L = {p ∈ H(F) : px = py}
is nonempty closed left ideal as H(F) is a left ideal. Hence by Zorn’s Lemma there
is some minimal left ideal I contained in L. Hence px = py for each p ∈ I.

(3) ⇒ (1): It follows easily by Remark 3.2.
Now assume (X,T ) is minimal. Then
(3) ⇒ (4): Since (X,T ) is minimal, Iy = X. Hence S = {p ∈ I : py = y}

is a nonempty semigroup, and by Ellis-Namakura Theorem there is an idempotent
u ∈ S ⊂ I. As I is a minimal left ideal, u is a minimal idempotent. Thus, we have
y = uy = ux.

(4) ⇒ (1): If y = ux, then u(x, y) = u(x, ux) = (ux, ux) ∈ ∆. By u ∈ H(F) and
Remark 3.2, (x, y) is kF -proximal. ¤

Now we discuss the condition when PF is an equivalence relation. First we have

Proposition 3.4. Let (X,T ) be a TDS and F be a full family.
(1) PF = PτF .
(2) If τF is a filter, then PF is an equivalence relation.
(3) If τF is a translation invariant filter, then PF is a T×T -invariant equivalence

relation.

Proof. (1) It remains to show PF ⊆ PτF . Let (x, y) ∈ PF and A = N((x, y), ∆ε).
For some fixed N ∈ N and any ε > 0 there is some δ > 0 such that if d(x′, y′) < δ
then d(T nx′, T ny′) < ε, 1 ≤ n ≤ N . Set A′ = N((x, y), ∆δ). By definition A′ ∈ F
and A′ ⊆ {t : [t, t + N ] ⊂ A}. Hence {t : [t, t + N ] ⊂ A} ∈ F . This means A ∈ τF .
So we have (x, y) ∈ PτF .

(2) and (3) are easy by (1). ¤
Remark: In [8] the author showed that PkτB is an equivalence relation. Here by
the fact that τkτB is a filter we get a more straightforward proof.

Let {(Xi, Ti)}i∈I be a family of TDS. Let η : (Πi∈IXi)
2 → Πi∈IX

2
i be the map

such that ((xi)i∈I , (yi)i∈I) 7→ (xi, yi)i∈I . Then η is a homeomorphism and maps the
relation of (Πi∈IXi)

2 into the relation of Πi∈IX
2
i , i.e. ηR(Πi∈IXi, T ) ⊆ Πi∈IR(Xi, T ),

where R is some relation.
Let {(Xi, Ti)}i∈I be a family of TDS, then the product space Πi∈IXi is Hausdoff

and compact (by Tychonoff Theorem) but generally not metric. Hence we have to
generalize the proximity to uniform space. Let (X,T ) be a uniform space and F be
a family, (x, y) ∈ X2 is F proximal if for any index α, N((x, y), α) ∈ F . By the
definition of product topology it is easy to prove the following proposition.

Proposition 3.5. Let {(Xi, Ti)}i∈I be a family of TDS and F be a family. Then
ηPF(Πi∈IXi, T ) ⊆ Πi∈IPF(Xi, T ). If F is a filter, then ηPF(Πi∈IXi, T ) = Πi∈IPF(Xi, T ).

The following results appeared in [3, 8, 17]. Here we offer a different and more
straightforward proof.

Theorem 3.6. Let (X,T ) be a TDS. Then the following conditions are equivalent

(1) P is an equivalence relation;
(2) P = PkτB;
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(3) Every orbit closure in (X ×X,T × T ) contains precisely one minimal set.
(4) Every orbit closure in (XI , T ) contains precisely one minimal set, where I is

any nonempty set.
(5) There is only one minimal right ideal in the enveloping semigroup E(X,T ).

Proof. (1) ⇒ (2): If P 6= PkτB, then there is some (x, y) ∈ P \PkτB, i.e. there is some

F ∈ τB such that T F (x, y) ∩∆ = ∅. Let M be an invariant set of T F (x, y). (As F
is thick, let {ni}∞i=i ⊆ F with [ni, ni + i] ⊆ F for any i ∈ N. Let z = lim T ni(x, y).

Then M = Orb(z, T ) is an invariant subset of T F (x, y).)
Since (x, y) is proximal to M , there is some (x′, y′) ∈ M such that (x, y) and

(x′, y′) are proximal. Especially, (x, x′), (y, y′) ∈ P . Together with (x, y) ∈ P we

have (x′, y′) ∈ P as P is transitive. Hence Orb((x′, y′), T ) ∩ ∆ 6= ∅. This is a

contradiction, since Orb((x′, y′), T ) ⊆ M and M ∩∆ = ∅.
(2) ⇒ (1): Since P = PkτB = PτkτB and τkτB is a filter, P is transitive and hence

is an equivalence relation.
(2) ⇒ (4): Assume there is some z ∈ (XI , T ) such that there are two disjoint

minimal sets M1,M2 in Orb(z). Let zi ∈ Mi such that (z, zi) ∈ P (XI , T ), i = 1, 2.
Hence (z1, z2) ∈ P (XI , T ) by condition (2) and Proposition 3.5. Then M1∩M2 6= ∅.
A contradiction.

(4) ⇒ (5): Let I = X and by E(X,T ) = Orb(id, T ) the result follows.

(5) ⇒ (3): For any z ∈ X2, E(X,T )z = Orb(z, T (2)). As there is only one
minimal right ideal in the enveloping semigroup, there is only one minimal set in

Orb(z, T (2)).
(3) ⇒ (2): If P 6= PkτB, then there is some z ∈ P \ PkτB, i.e. there is some

F ∈ τB such that T F z ∩ ∆ = ∅. Let M be an invariant set of T F z. Since z ∈ P ,

Orb(z, T (2))∩∆ 6= ∅. As Orb(z, T (2))∩∆ is a closed invariant subset of Orb(z, T (2)),
it contains some minimal set M ′. Thus we get two distinct minimal subsets in

Orb(z, T (2)). This contradicts (3). ¤
Now we give a more general statement of the above result. Since the proof is

similar to the above one and we omit it.

Theorem 3.7. Let (X,T ) be TDS and F be an invariant filter. Then the following
conditions are equivalent

(1) PkF is an equivalence relation;
(2) PkF = PkτkF ;
(3) There is only one minimal set in ωkFT (z) for every point z ∈ (X×X,T×T ).
(4) There is only one minimal set in ωkFT (z) for every point z ∈ (XI , T ), where

I is any nonempty set.
(5) There is only one minimal right ideal in H(F).

4. Distality concepts

This section is devoted to discuss the distality concepts via families. Namely, for
a family F , the notion of F -Li-Yorke pairs and F -almost distality are introduced,
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and F -almost distality is characterized. Let us see first how the notions comes from
the previous section.

It is easy to see that if F1 ⊆ F2, then PF1 ⊆ PF2 . Hence we have

∆ = PZ+ ⊆ PkB = Asymp ⊆ · · · ⊆ PF ⊆ · · · ⊆ PB = P

We have the following observations.
1. When P = PZ+ , (X,T ) is distal and H(kB) is a group;
2. When P = PkB, (X,T ) is almost distal and H(kB) itself is the minimal left

ideal;
3. When P = PkτB = PτkτB, P is an equivalence relation and H(kB) has only one

minimal left ideal.

It is naturel to ask the following questions:
(1) When P = PZ+ , (X,T ) is distal. Then what is the case if PF = ∆ = PZ+?
(2) When PB = P = PkB, (X,T ) is almost distal. In other words this means

(X,T ) has no Li-Yorke pairs. Then what is the case if PF = PkF?

To answer (1) we need the notion of F -distality which was introduced in [2]. To
answer (2) we introduce the notion of F -Li-Yorke pairs and F -almost distality.

Definition 4.1. (X,T ) is called F -distal if PkF = ∆X .

It is easy to see that (X,T ) is F -distal iff for any (x, y) ∈ X \∆X there is some
F ∈ F such that (x, y) ∈ DF (i.e. (x, y) 6∈ PF ). kB-distal is the usual concept of
distality. (X,T ) is B- distal iff it contains no proper asymptotic pair.

Proposition 4.2. Let F be a full family. Then any F-distal system has zero topo-
logical entropy.

Proof. By [6] Asym(X,T )\∆ 6= ∅ for any positive entropy systems. By the definition
of F -distality, Asym(X,T ) = ∆ and the result follows. ¤
F -distality is studied in [2], and the following nice result was proved.

Proposition 4.3. [2] Let (X,T ) be a TDS and F-a filter such that H(F) is a
semigroup of E(X,T ). Then (X,T ) is F-distal iff H(F) is a group of bijections of
X.

Now we discuss the notion of F -almost distality.

Definition 4.4. Let (X,T ) be a TDS and F be a family.

(1) (x, y) is said to be F -Li-Yorke pair if (x, y) is kF- proximal but not F-
proximal, i.e. (x, y) ∈ PkF \ PF . We denote the set of all F-Li-Yorke pairs
by LYF .

(2) (X,T ) is said to be F -almost distal if (X,T ) has no F- Li-Yorke pair.

Remark 4.5. 1. (x, y) ∈ LYF iff for any F ∈ F , (x, y) ∈ PF and there is F ∈ kF
such that (x, y) 6∈ PF . If in addition F is a filter then by Remark 3.2 (x, y) ∈ LYF
iff there are p1, p2 ∈ H(F) such that p1x = p1y and p2x 6= p2y.

2. Let (X,T ) be a TDS and F be a filter. Then (X,T ) is F-almost distal iff
PF = PkF iff if (x, y) ∈ X2 is kF-proximal then for any p ∈ H(F), px = py.
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Theorem 4.6. Let (X,T ) be a TDS and F be a thick filter. Then (X,T ) is F-almost
distal iff (H(F), T ) is minimal.

Proof. Let (X,T ) be F -almost distal. As (H(F), T ) is a subsystem of (H(kB), T ) by
Proposition 2.5, there is a minimal subset I ⊂ H(F). Set u ∈ I be an idempotent.
Then for any x ∈ X, by ux = u(ux) and u ∈ H(F) (x, ux) is kF -proximal. As
(X,T ) is F -almost distal, px = pux for any p ∈ H(F). Hence we have px = pux
for any x ∈ X. That is, p = pu ∈ H(F)I ⊂ H(kB)I ⊂ I. Thus H(F) = I, i.e.
(H(F), T ) is minimal.

Now show the converse. Suppose (x, y) is an F -Li-Yorke pair. Then there is
p ∈ H(F) such that px = py. Let I = {p ∈ H(F) : px = py}. I is a nonempty
closed left ideal of H(kB). As (x, y) is not F -proximal, there is q ∈ H(F) such
that qx 6= qy. Hence q 6∈ I and H(F) 6= I. Thus, it follows that (H(F), T ) is not
minimal. ¤
Corollary 4.7. Let (X,T ) be a TDS and F be a thick filter. If (X,T ) is F-almost
distal, then any factor of (X,T ) is F-almost distal. Also for any nonempty set I,
the product system (XI , T ) is F-almost distal.

Proof. It follows from Theorem 4.6, Propositions 2.3 and 2.4. ¤
Corollary 4.8. Let (X,T ) be a TDS and F be a thick filter. Then

(1) If (X,T ) is F-almost distal, then for every x ∈ X, ωkF(T, x) is minimal.
(2) (X,T ) is F-almost distal iff for every (x, y) ∈ X2, ωkF(T × T, (x, y)) is

minimal.

Proof. (1) Since H(F) is a minimal left ideal, ωkF(T, x) = H(F)x is minimal.
(2) As (X,T ) is F -almost distal, and hence (X×X,T ×T ) is F -almost distal. By

(1) for every (x, y) ∈ X2 ωkF(T × T, (x, y)) is minimal. Now we show the converse.
Suppose (x, y) is kF -proximal, then ωkF(T × T, (x, y)) ∩ ∆X 6= ∅. As ωkF(T ×
T, (x, y)) is minimal, ωkF(T × T, (x, y)) ⊂ ∆X . That is, (x, y) is F -proximal and by
the definition it is not an F -Li-Yorke pair. Hence (X,T ) is F -almost distal. ¤

To end the section we give a negative answer to some problem in [7]. By a Z-
system (X,T ) we mean T : X → X is a homeomorphism and the action group is
Z. In this case, all notions are similar to the the ones used before. For example,
a pair (x, y) ∈ X2 is proximal if lim inf |n|→∞ d(T nx, T ny) = 0 and is asymptotic
if lim|n|→∞ d(T nx, T ny) = 0. We call the Z-system (X,T ) almost distal if every
proximal pair (x, y) ∈ X is asymptotic. In [7] the authors asked whether or not
any transitive almost distal Z-system is an asymptotic extension of a transitive
distal system. That is, whether P = PB = PkB = Asym(X,T ) implies that P is
a closed equivalence relation. Since there is a minimal Z-system (X,T ) such that
P (X,T ) = Asym(X,T ) is an equivalence but not a closed relation [15], and hence it
is not an asymptotic extension of a distal system. Thus, the answer to the question
in [7] is negative. It indicates that the condition that PF is closed is not easy to be
satisfied, and the structure of an almost distal system is not as simple as we have
thought before.
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5. Recurrence and F-semi-distality

In this section we will give some characterizations of F -semi-distality and PI-
flows. Let (X,T ) be a TDS and F be a family. Recall that x ∈ X is said to be
F -recurrent if x ∈ ωF(T, x), i.e. for every neighborhood U of x, N(x, U) ∈ F .

Definition 5.1. Let (X,T ) be a TDS and F be a family.

(1) (x, y) ∈ X2 \ ∆X is a strong F -Li-Yorke pair if (x, y) is kF- proximal and
kF-recurrent, i.e. for any F ∈ F , (x, y) ∈ PF and N((x, y), U) ∩ F 6= ∅,
where U is any neighborhood of (x, y).

(2) Call (X,T ) F -semi-distal if (X,T ) has no strong F-Li-Yorke pair.

Remark 5.2. (1) Let F be a filter. Then (x, y) is a strong F-Li-Yorke pair iff
there are p1, p2 ∈ H(F) such that p1x = p1y and p2(x, y) = (x, y).

(2) Any strong F-Li-Yorke pair is an F-Li-Yorke pair. And hence any F-almost
distal system is F-semi-distal.

To give some equivalence conditions of F -semi-distality, we need some basic results
on the idempotents of Ellis semigroup.

Ellis-Namakura Theorem says that for any Ellis semigroup E the set Id(E) of
idempotents of E is not empty. We can introduce a quasi-order (a reflexive, transitive
relation) <R on the set Id(E) by defining v <R u iff uv = v. If v <R u and u <R v
we say that u and v are equivalent and write u ∼R v. Similarly, we define <L and
∼L. An idempotent u ∈ Id(E) is minimal if v ∈ Id(E) and v <R u implies u <R v.
The following lemma is well-known [1, 11], and for completeness we include a proof.

Lemma 5.3. (1) Let L be a left ideal of Ellis semigroup S and u ∈ Id(S). Then
there is some idempotent v in Lu such that v <R u and v <L u.

(2) An idempotent is minimal iff it is contained in some minimal left ideal.

Proof. (1) First note that Lu is also a left ideal. By Ellis-Namakura Theorem there
is some w ∈ Id(Lu). Let v = uw. Then v ∈ uLu ⊆ Lu and v2 = uwuw = uww =
uw = v. And we have vu = v and uv = v, i.e. v <R u and v <L u.

(2) Let u be a minimal idempotent and L be a left minimal ideal. Then by (1)
there is some idempotent v in Lu such v <R u. Since u is minimal, we have u <R v.
Thus u = vu ∈ Lu. As Lu is a minimal ideal, the result follows.

Conversely, let L be a minimal left ideal and u ∈ Id(L). Let v ∈ S be any
idempotent such that v <R u. Then by (vu)(vu) = vvu = vu, vu is an idempotent
of L. As L is minimal, L(vu) = L. Then there is some p ∈ L such pvu = u. Thus
vu = (uv)u = u(vu) = p(vu)(vu) = pvu = u, i.e. u <R v. That is, u is minimal. ¤

By this lemma we have the following readily.

Corollary 5.4. Let L be a left ideal of Ellis semigroup S and u ∈ Id(L). Then
there is some minimal idempotent v in L such that v <R u and v <L u.

The following proposition is needed for the proof of the next theorem.
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Proposition 5.5. Let (X,T ) be a TDS, F be a thick filter and x ∈ X be a kF-
recurrent point. Then there is some minimal point y ∈ ωkFT (x) such that (x, y) ∈
PkF and it is a kF-recurrent point of (X2, T × T ).

Especially, for any recurrent point x, there is some minimal point y in the orbit
closure of x which is proximal to x and (x, y) is a recurrent point of (X2, T × T ).

Proof. Since x ∈ ωkFT (x) = H(F)x, there is some u ∈ Id(H(F)) such that ux = x.
By Corollary 5.4 there is a minimal idempotent v ∈ H(F) with vu = uv = v. Let
y = vx, then

u(x, y) = (ux, uvx) = (ux, vx) = (x, y),

v(x, y) = (vx, vvx) = (y, y).

Thus the statement follows. ¤
Theorem 5.6. Let (X,T ) be a TDS and F be a thick filter. Then (X,T ) is F-
semi-distal iff any idempotent of H(F) is minimal.

Proof. Assume that (X,T ) is F -semi-distal. Let u ∈ H(F) is idempotent. By
Corollary 5.4 there is some minimal idempotent v ∈ H(F) such that vu = uv = v.
Then for any x ∈ X

u(ux, vx) = (u2x, uvx) = (ux, vx),

v(ux, vx) = (vux, v2x) = (vx, vx).

That is, (ux, vx) is a strong F -Li-Yorke pair. As (X,T ) is F - semi-distal, ux = vx.
Since x is arbitrary, u = v. In particular u is minimal.

Now we show the converse. Let (x, y) be any strong F -Li-Yorke pair. Then (x, y)
is kF -recurrent, and since any idempotent is minimal, it follows that (x, y) is a
minimal point of (X2, T × T ). But (x, y) is also proximal. Hence (x, y) ∈ ∆. That
is, (X,T ) is F -semi-distal. ¤
Corollary 5.7. Let (X,T ) be a TDS and F be a thick filter. If (X,T ) is F-semi-
distal, then any factor of (X,T ) is F-semi-distal. Also for any nonempty set I, the
product system (XI , T ) is F-semi-distal.

Proof. It follows from Theorem 5.6, Propositions 2.3 and 2.4. ¤
Corollary 5.8. Let (X,T ) be a TDS and F be a thick filter.

(1) If (X,T ) is F-semi-distal then every kF-recurrent point is minimal.
(2) (X,T ) is F-semi-distal iff every kF-recurrent point of X2 is minimal.

Proof. (1) Assume x is kF -recurrent. Then x ∈ ωkF(T, x) = H(F)x. As H(F) is
an ideal, there is an idempotent u ∈ H(F) such that ux = x. By Theorem 5.6 u is
minimal and hence x is minimal.

(2) The first part follows from (1). Now we suppose every kF -recurrent point of
X×X is minimal. If (x, y) ∈ X×X is kF -proximal, then ωkF(T×T, (x, y))∩∆X 6= ∅.
Since ωkF(T × T, (x, y)) is minimal, ωkF(T × T, (x, y)) ⊂ ∆X . So x = y. That is,
(X,T ) is F -semi-distal. ¤
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Corollary 5.9. Let F be a thick filter. If a TDS (X,T ) is F-semi-distal and kF-
transitive, then it is minimal. In particular, any transitive semi-distal system is
minimal.

Now we will shall how to interpret PI-flows as some F -semi-distal ones. Given two
Z-systems (X,T ) and (Y, S), a continuous map π : X → Y is called a homomorphism
of systems (X,T ) and (Y, S) if it is onto and πT = Sπ. We say (X,T ) is an entension
of (Y, S). If π is also injective then it is called an isomorphism. An extension
π : X → Y is called proximal (resp. distal) if π(x1) = π(x2) implies that x1 and x2

are proximal (resp. distal). It is called equicontinuous if for any ε > 0, there exists
δ > 0 such that π(x1) = π(x2) and d(x1, x2) < δ imply d(T n(x1), T

n(x2)) < ε for
any n ∈ Z. An equicontinuous extension is also called an isometric extension. The
extension π is almost one to one if there exists a dense Gδ set X0 ⊂ X such that
π−1π(x) = {x} for any x ∈ X0. Finally the extension is called weak mixing if the
subsystem Rπ = {(x1, x2) : π(x1) = π(x2)} is toplogically transitive under T × T .

The following theorem is the structure theorem for minimal systems [4][Theorem
14.30].

Theorem 5.10 (Structure theorem for minimal systems). Given a compact metric
minimal system (X,T ), there exists a countable ordinal η and a canonically defined
commutative diagram of minimal systems (it is called PI-tower):

Y0 = {pt}¾

X = X0

?

@
@@R

Z1
¾ Y1

X1
¾

?
¾

¾

· · ·

· · ·

Yν

Xν

?
¾

@
@@R

Zν+1 Yν+1
¾

Xν+1
¾

?
· · ·

· · ·

¾

¾

Yη = Y∞

Xη = X∞

?

π0

ρ1

σ1

ψ1

φ1

π1 πν

ρν+1

σν+1

ψν+1

πν+1

φν+1

π∞

where for each ν ≤ η, ρν is equicontinuous, φν and ψν are proximal and π∞ is open
and weakly mixing. For a limit ordinal ν, Xν , Yν , πν etc. are the inverse limits of
Xλ, Yλ, πλ etc. for λ < ν.

(X,T ) is said to be strictly proximal isometric or strictly PI if it has structure
as (Y∞, T ) in PI-tower, i.e. it can be get from the trivial system by a (countable)
transfinite succession of proximal and equicontinuous extensions. And (X,T ) is said
to be proximal isometric or PI if in PI-tower π∞ is isomorphic, or equivalently it is
the factor of a strictly PI system by a proximal extension.

If in the above definitions proximal is replaced by almost one to one then we get
the notions of strictly HPI system and HPI system.

Theorem 5.11. [16] Let (X,T ) be a minimal dynamical system. Then

(1) X is PI iff it satisfies the following property: whenever W is a closed invari-
ant subset of X ×X which is topologically transitive and has a dense subset
of minimal points, then W is minimal.

(2) X is HPI iff every transitive subsystem Y ⊆ X×X such that every projection
πi : Y → X, i = 1, 2 is semi-open (i.e. the image of every nonempty open set
has nonempty interior) is minimal.
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By this theorem we can get the following results readily.

Proposition 5.12. Let (X,T ) be a minimal system. If (X,T ) is semi-distal, then
it is an HPI-flow, i.e. pointed distal.

Theorem 5.13. Let (X,T ) be minimal system. Then (X,T ) is a PI-flow iff it is
τkτB-semi-distal.

Proof. It follows from Theorem 5.11, Corollary 5.8 and Corollary 2.8. ¤
Let K be the smallest ideal of βZ+. It is well known that K is the union of all

minimal left ideals and is also the union of all minimal right ideals. By Proposition
2.7 it is easy to get h(τkτB) = K. In [13] the authors showed the algebraic structure
of K \ K is indeed very rich. For example, they showed there are 2c idempotents
in K \K, where c is the cardinality of the continuum. Now Let (X,T ) be a TDS
and M be the smallest ideal of E(X,T ). Then H(τkτB) = M . But in this case we
don’t know whether there are idempotents in M \ M or not. Surely when (X,T )
is semi-distal there is no idempotent in M \ M , as every idempotent of H(X) is
minimal and hence in M . In general we have that the condition that there is no
idempotent in M \M is equivalent to PI. Equivalently, we have

Theorem 5.14. Let (X,T ) be minimal system. Then (X,T ) is a PI-flow iff any
idempotent of H(τkτB) is minimal.

Proof. It follows from Theorem 5.6 and Theorem 5.13. ¤
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