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Abstract. A dynamical system (X, T ) is F-transitive if for each pair of open and

non-empty subsets U and V of X, N(U, V ) = {n ∈ Z+ : U ∩ T−nV 6= ∅} ∈ F , where
F is a collection of subsets of Z+ which is hereditary upward. (X, T ) is F-mixing if

(X ×X, T × T ) is F-transitive. For a subset S of Z+, (x, y) ∈ X ×X is S-proximal if

lim inf
S3n→+∞

d(T n(x), T n(y)) = 0 and the S-proximal cell PS(x) is the set of points which

are S-proximal to x ∈ X. We show that if (X, T ) is F-mixing then for each S ∈ kF
(the dual family of F) and x ∈ X, PS(x) is a dense Gδ subset of X, and when (X, T )
is minimal and F is a filter the reciprocal is true. Moreover, other conditions under

which the reciprocal is true are obtained. Finally the structure of proximal cells for F-

mixing systems is discussed, and a new and simpler proof of the Xiong-Yang’s theorem
is presented.

§1 introduction

Throughout this paper a topological dynamical system (TDS for short) is a pair
(X, T ), where X is a nonvoid compact metric space with a metric d and T is a
continuous surjective map from X to itself. Recall that (X, T ) is transitive if for
each pair of opene (i.e. nonempty and open) subsets U and V , N(U, V ) = {n ∈ Z+ :
U∩T−nV 6= ∅} is non-empty. (X, T ) is (topologically) weakly mixing if (X×X, T×T )
is transitive. Let ω(T, x) be the set of the limit points of orbit of x, Orb(x, T ) =
{x, T (x), T 2(x), . . . }. x ∈ X is called a transitive point if ω(T, x) is dense in X. It
is easy to see that if (X, T ) is transitive then the set of all transitive points is a
dense Gδ set of X (denoted by TransT ). If TransT = X then we say that (X, T ) is
minimal. Equivalently, (X, T ) is minimal iff it contains no proper subsystems. It is
well known that there is some minimal subsystem in any dynamical system (X, T ),
which is called a minimal set of X. Each point belonging to some minimal set of X
is called a minimal point.
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Classically in topological dynamical systems pairs of points are considered from the
asymptotic behavior of their trajectories. A pair (x, y) ∈ X×X is said to be proximal
if lim inf

n→+∞
d(Tn(x), Tn(y)) = 0 and the set of all proximal pairs is denoted by P . P is

a reflexive, symmetric, T−invariant relation, but is not in general transitive or closed
[Au1, Au2, Au3]. For x ∈ X it is interesting and useful to consider the points which
are proximal to x. That is, we are interested in the set P (x) = {y ∈ X : (x, y) ∈ P},
which is called the proximal cell of x.

The first and maybe the most important result concerning the proximal cell is
that for any x ∈ X, P (x) contains a minimal point [Au3,E], more precisely, every
minimal subset of Orb(x) meets P (x). It follows immediately that if P (x) is a
singleton then x is a minimal point and in the case x is called a distal point. Veech
showed that a transitive system with a distal point has a very simple structure [V].
On the other hand, when the proximal cell is ”big” the system will be complex in
some sense. In [KR] the authors showed that in a weakly mixing system the set
{x ∈ X : P (x) is residual in X} is residual in X. Hence a weakly mixing system is
”almost proximal”. Moreover, Furstenberg [F2] showed in a minimal weakly mixing
system P (x) is residual for all x ∈ X. Recently Akin and Kolyada gave an elegant
proof and showed that this is true for any weakly mixing system [AK]. When one reads
these papers, some nature questions come to mind. For example, for a dynamical
system when will the converse of Akin-Kolyada’s result hold? Can we say more
concerning the structure of the proximal cell?

We discuss those questions in a more general setting: F-mixing systems, where F
is a collection of subsets of Z+ which is hereditary upward. We find that the notion
of proximal cells along sequences is very useful in studying the questions. In Section
3 it is shown that if (X, T ) is F-mixing then for each S ∈ kF and x ∈ X, PS(x) is
a dense Gδ set of X, and the reciprocal is true when (X, T ) is minimal and F is a
filter. Also some equivalence conditions for minimal weak mixing are listed. Lots of
conditions when the converse holds are given in Section 4. In Section 5 the structure
of the proximal cells of an F-mixing system is discussed. Finally, in the Appendix a
new and simpler proof of Xiong-Yang’s theorem is given.

§2 Preliminary

In this section we introduce some basic notions and facts in TDS. Firstly we recall
some notations related to a family. For the set of nonnegative integers Z+, denote
by P = P(Z+) the collection of all subsets of Z+. A subset F of P is a family, if it
is hereditary upward. That is, F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F . A family F is
proper if it is a proper subset of P, i.e. neither empty nor all of P. It is easy to see
that F is proper if and only if Z+ ∈ F and ∅ /∈ F . For a family F , the dual family is

kF = {F ∈ P|F ∩ F ′ 6= ∅ for all F ′ ∈ F}. (2.1)

Sometimes the dual family kF is also denoted by F∗. kF is a family, proper if F is.
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Clearly, k(kF) = F and F1 ⊂ F2 implies kF2 ⊂ kF1. Let B the family of all infinite
subsets of Z+. And it is easy to see its dual kB is the family of all cofinite subsets.

A family F is full if F · kF ⊂ B, where F1 · F2 = {F1 ∩ F2 : Fi ∈ Fi, i = 1, 2}.
If a proper family F satisfies F · F ⊂ F , then it is called a filter. If F is full then
kB ⊂ F ⊂ B. If F is a filter, then kB ⊂ F implies F is full (see [Ak1]).

A subset F of Z+ is thick if it contains arbitrarily long runs of positive integers.
Each element of the dual family of thick family is said to be syndetic or relatively
dense. F is syndetic if and only if there is N such that {i, i + 1, · · · , i + N} ∩ F 6= ∅
for every i ∈ Z+. A set F is called thickly syndetic if for every N the positions where
length N runs begin form a syndetic set. And a set F is called piecewise syndetic if
and only if it is the intersection of a thick set and a syndetic set. Among families
above thickly syndetic family is a filter.

Let A be a subset of Z+. The upper Banach density of A is

d∗(A) = lim sup
|I|→∞

|A ∩ I|
|I| , (2.2)

where I ranges over intervals of Z+ and | · | denote the cardinality of the set. The
upper density of a subset A of Z+ is

d̄(A) = lim sup
N→∞

|A ∩ {0, 1, · · · , N − 1}|
N − 1

. (2.3)

The lower Banach density d∗(A) and the lower density d(A) are similarly defined. If
d̄(A) = d(A), then we say A has density d(A).

Let (X, T ) be a TDS, x ∈ X and U, V ⊂ X. We define the return times set

N(U, V ) = {n ∈ Z+ : U ∩ T−n(V ) 6= ∅}, and (2.4)

N(x,U) = {n ∈ Z+ : Tnx ∈ U} (2.5)

Let family F ⊂ B. Recall that a TDS (X, T ) is F-transitive if for each pair of
opene subsets U and V of X, N(U, V ) ∈ F . (X, T ) is F-mixing if (X × X, T × T )
is F-transitive. x ∈ X is called an F-recurrent point if N(x,U) ∈ F for every
neighborhood U of x. When we take F = B, B-transitivity (respectively B-mixing,
B-recurrence) is the usual transitivity (respectively weak mixing, recurrence).

A subset of N is an IP-set if it is equal to some FS({pi}∞i=1) = {pi1 +pi2 +· · ·+pik
:

k ∈ N, 1 ≤ i1 < i2 < · · · < ik}, where pi ∈ N. It is well known that (see, for example,
[F2])

Lemma 2.1. Let (X, T ) be a TDS. Then
1. x ∈ X is a minimal point iff for any neighborhood U of x, N(x,U) is a syndetic

set.
2. x ∈ X is a recurrent point iff for any neighborhood U of x, N(x,U) contains an

IP-set.
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3. (X, T ) is weakly mixing iff N(U, V ) is thick for any opene sets U, V of X.
4. (X, T ) is strongly mixing iff N(U, V ) is cofinite for any opene sets U, V of X.

Finally, a TDS (X, T ) is
• an E-system if it is transitive and there is an invariant Borel probability measure

µ with full support, i.e., supp(µ) = X;
• an M -system if it is transitive and the set of minimal points is dense; and
• a P -system if it is transitive and the set of periodic points is dense.

§3 F-mixing systems and its proximal cells

Let (X, T ) be a TDS with a metric d and S ∈ B, the set of all infinite sequences
of Z+. Recall that (x, y) is S-proximal if lim inf

S3n→+∞
d(Tn(x), Tn(y)) = 0. Denote the

S-proximal relation by PS , i.e, PS = {(x, y) ∈ X×X : (x, y) is an S−proximal pair}.
Sometimes to indicate the space and the map we also use the notation PS(X, T ). If
S = Z+, PS(X, T ) is just the ordinary proximal relation, by which we write P (X, T )
or P . Note that for a relation R ⊂ X ×X and x ∈ X, R(x) = {y ∈ X : (x, y) ∈ R}.
P (x)(resp. PS(x)) is called the proximal cell (resp. S-proximal cell) at x. First we
have the following easy observation.

Lemma 3.1. Let (X, T ) be a TDS and S = {s1 < s2 < s3 < · · · } ∈ B. Then

PS =
+∞⋂

k=1

(
∞⋃

n=1

(T × T )−sn∆k),

where ∆k = {(x, y) : d(x, y) < 1
k}.

Note that PS and PS(x) are Gδ subsets, since ∆k is an open set.

It is known that a family F is a filter iff kF has Ramsey property, i.e. if ∪n
i=1Ai ∈

kF then one of Ai is still in kF . Furstenberg [F1] showed that for a weakly mixing
system (X, T ) the smallest family containing {N(U, V ) : U, V are opene sets of X}
is a filter. Hence for a full family F , it is easy to see that (X, T ) is F-mixing iff
it is weakly mixing and F-transitive. Now we generalize the result of [AK] from a
weakly mixing system to an F-mixing system. Note that a detailed description of
the proximal cells for F-mixing systems is presented in Section 5.

Theorem 3.2. Let (X, T ) be a TDS and F be a full family. If (X, T ) is F-mixing
then for each S ∈ kF and x ∈ X, PS(x) is a dense Gδ set of X.

Proof. The proof is close to that of Theorem 3.8 in [AK]. If (X, T ) is trivial, it is
obvious. Now we suppose that (X, T ) is non-trivial. Let F1 be the filter generated
by {N(U, V ) : U, V are opene sets of X}. Then F1 ⊂ F and hence kF1 ⊃ kF . Since
(X, T ) is non-trivial F-mixing, kB ⊂ F1. Hence (kB · F1) · kF1 = F1 · kF1, therefore
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F1 is full family. For S1 ∈ kF1, given x ∈ X and an opene set U of X we will find
some y ∈ U such that y is S1-proximal to x.

For k = 1, 2, . . . let Gk = {G1
k, . . . , Gnk

k } be a finite open cover of X with the
diameter less than 1/k. As

S1 = S1 ∩N(x,X) =
nk⋃

j=1

(S1 ∩N(x,Gj
k))

there is some i ∈ {1, 2, · · · , nk} such that S1 ∩N(x,Gi
k) is in kF1, since F1 is a filter

and hence kF1 has Ramsey property.
Now let U0 = U and define inductively opene sets U1, U2, · · · and positive integers

nj ∈ S1 as follows. Since N(Uk−1, G
i
k) ∈ F1, S1 ∩ N(x,Gi

k) ∩ N(Uk−1, G
i
k) ∈ B

and we can choose an opene set Uk ⊂ Uk−1 and an integer k < nk ∈ S1 such that
Tnk(x) ∈ Gi

k and Tnk(Uk) ⊂ Gi
k. If y ∈

⋂

k

Uk, then Tnk(x), Tnk(y) ∈ Gi
k and so

d(Tnk(x), Tnk(y)) < 1/k. Thus y ∈ U is S1 proximal to x. ¤

If (X, T ) is strongly mixing Theorem 3.2 states that for each S ∈ B and each
x ∈ X, PS(x) is a dense Gδ-set! We now show that the converse of Theorem 3.2
holds when F is a filter and X is minimal. Especially, for a minimal TDS (X, T ),
PS(x) is dense for each S ∈ B and x ∈ X iff (X, T ) is strongly mixing.

To show what we just claimed, we need to introduce some notations. Let (X, T )
be a TDS, Xn = X×X×· · ·×X (n times) be product system, S = {s1, s2, . . . } ∈ B
and n ≥ 2. Set

RPn
S (X, T ) = RPn

S =:
∞⋂

k=1

∞⋃
n=1

(T (n))−sn∆(n)
1
k

(3.1)

where T (n) = T × T × · · · × T (n times) and ∆(n)
ε = {(x1, x2, · · · , xn) ∈ Xn :

sup1≤k,l≤n d(xk, xl) ≤ ε}. It is easy to check that x ∈ RPn
S iff there exist x′i ∈ Xn

with x′i → x and {ni} ⊂ S such that Tnix′i → ∆(n), where ∆(n) = {(x, x, · · · , x) ∈
Xn : x ∈ X}. For a family F , let RPn

F (X, T ) =
⋂

S∈kF RPn
S (X, T ).

The following proposition first appears in [HY2] and we include a proof for com-
pleteness.

Proposition 3.3. Let (X, T ) be a minimal TDS and F be a full family. Then (X, T )
is F-mixing iff RPn

F (X, T ) = Xn for each n ≥ 2.

Proof. First we assume RPn
S (X, T ) = Xn for each n ≥ 2 and S ∈ kF . As

RP 2
S(X, T ) = X2 for S ∈ kF ⊂ B, one has that the regionally proximal relation

RP 2
Z+

(X, T ) = X2. Thus (X, T ) is weakly mixing from the minimality of (X, T ) (see
[Au3]). Hence it remains to show (X, T ) is F- transitive, i.e. for any two opene
subset U and V of X, N(U, V ) ∈ F .
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As (X, T ) is minimal, there exists N ∈ N such that
⋃N−1

n=0 T−nV = X. Let δ > 0
be the Lebesgue number of the open cover {V, T−1V, · · ·T−(N−1)V }. Define

A ={n ∈ Z+ : ∃xi ∈ T−iU, i = 0, 1, · · · , N − 1 such that

sup
0≤k,l≤N−1

d(Tnxk, Tnxl) ≤ δ}.

Since RPN
S (X, T ) ∩ (U × T−1U × · · · × TN−1U) 6= ∅ for each S ∈ kF , one has

A ∩ S 6= ∅ for each S ∈ kF . Hence A ∈ F . For any n ∈ A, there exists xi ∈
T−iU, i = 0, 1, · · · , N − 1 such that diam{Tnx0, T

nx1, · · · , TnxN−1} ≤ δ. Therefore,
{Tnx0, T

nx1, · · · , TnxN−1} ⊂ T−kV for some 0 ≤ k ≤ N − 1. In particular, xk ∈
T−(n+k)V . Hence T−kU ∩ T−(n+k)V 6= ∅, that is, T−nV ∩ U 6= ∅. This shows
that A ⊂ N(U, V ) and implies that N(U, V ) ∈ F . As U, V are arbitrary, (X, T ) is
F-transitive.

Now assume (X, T ) is F-mixing. Let n ∈ N and S ∈ kF . And let xi ∈ X and Ui be
a neighborhood of xi, 1 ≤ i ≤ n. For any ε > 0 take an opene U with diamU < ε. As

(X, T ) is F- mixing,
n⋂

i=1

N(Ui, U) ∈ F , and thus we can take m ∈
n⋂

i=1

N(Ui, U)
⋂

S.

Hence there are x′i ∈ Ui, 1 ≤ i ≤ n such that {Tmx′i : 1 ≤ i ≤ n} ⊂ U , i.e.
sup1≤k,l≤n d(Tmx′k, Tmx′l) ≤ ε. Thus we have (x1, x2, · · · , xn) ∈ RPn

S (X, T ). That
is, RPn

S (X, T ) = Xn. ¤

Now we are ready to show

Theorem 3.4. Let (X, T ) be minimal and F be a filter. Then (X, T ) is F-mixing
iff for each S ∈ kF and x ∈ X, PS(x) is a dense Gδ-set of X.

Proof. It remains to show that if for each S ∈ kF and x ∈ X, PS(x) is a dense Gδ-set
of X, then RPn

S (X, T ) = Xn for each n ≥ 2. Now let U1, . . . , Un be opene sets of X.
Let x1 ∈ U1. Given ε > 0 let

Ai = {k ∈ Z+ : there is xi ∈ Ui with d(T k(x1), T k(xi)) < ε/2}

for i = 2, . . . , n. As PS(x1) is dense for each S ∈ kF , we get that Ai ∈ F , 2 ≤ i ≤ n.
For a given S ∈ kF , A2 ∩ . . .∩An ∩S 6= ∅. Thus there are xi ∈ Ui and n ∈ S such

that
d(Tn(x1), Tn(xi)) < ε/2

for i = 2, . . . , n. This implies that sup1≤i<j≤n d(Tn(xi), Tn(xj)) < ε, and hence
RPn

S (X, T ) = Xn for each S ∈ kF and n ≥ 2. By Proposition 3.3 this implies that
(X, T ) is F-mixing. ¤
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Corollary 3.5. Let (X, T ) be a minimal TDS and for each S ∈ B and x ∈ X, PS(x)
is dense in X. Then (X, T ) is strongly mixing.

Proof. Let kF = B. Then the corollary follows from Theorem 3.4. ¤

To end the section we now state several equivalence conditions for a TDS to be
minimal weakly mixing. To this aim we first need some more notations. Let (X, T )
be a TDS and its enveloping semigroup E = E(X, T ) be the closure of {Tn : n ∈ Z+}
in XX (with its compact, usually non-metrizable, pointwise convergence topology).
An u ∈ E(X, T ) with u2 = u is called an idempotent. The set of all idempotents
of E(X, T ) is denoted by Id(E(X, T )). Ellis pointed out that for any TDS the
idempotents in E(X, T ) always exist. A non-empty subset I ⊂ E is a left ideal if it
is closed and EI ⊂ I. A minimal left ideal is a left ideal which does not contain any
proper left ideal of E. Obviously every left ideal is semigroup and every left ideal
contains some minimal ideal. An idempotent is minimal if it is contained in some
minimal left ideal (for details concerning the enveloping semigroup see, for example,
[Au3,E]). It is well known that for a minimal system (X, T ) x is proximal to y iff
there is some minimal idempotent u such that y = ux. And hence for a minimal
system P (x) = Id(E(X, T ))x = {ux : u is a minimal idempotent of E(X, T )}.

Now we give some equivalence conditions for a system to be minimal weak mixing
which are closely related to our paper. For other equivalence conditions, see for
example [Au3], [HY2].

Theorem 3.6. Let (X, T ) be a minimal system. Then the following statements are
equivalent:

(1) (X, T ) is weakly mixing.
(2) (X, T ) is thickly syndetic transitive.
(3) For any x ∈ X, P (x) is dense in X.
(4) For any x ∈ X and any piecewise syndetic set S, PS(x) is dense in X.
(5) For any x ∈ X, Id(E(X, T ))x is dense in X.
(6) For any x ∈ X, {ux : u is a minimal idempotent of E(X, T )} is dense in X.
(7) For any x ∈ X and any opene set U of X, N(x,U) contains an IP set.

Proof. (2) ⇒ (4): It follows from Theorem 3.4.
(4) ⇒ (3): It is obvious.
(3) ⇒ (1): It follows from Theorem 3.4.
(1) ⇒ (2): As (X, T ) is minimal it is syndetic transitive, i.e. N(U, V ) is syndetic

for any opene sets U, V of X. Since (X, T ) is weakly mixing, the smallest family
containing {N(U, V ) : U, V are opene sets of X} is a filter [F1]. This implies that for

each n ∈ N and opene sets U, V of X,
n−1⋂
i=0

N(U, T−iV ) contains N(U ′, V ′) for some

opene U ′, V ′, it is syndetic, thus N(U, V ) is thickly syndetic.
(3) ⇒ (6): Assume that for any x ∈ X, P (x) is dense in X. Let x ∈ X and U be

any opene set of X. We show there is some minimal idempotent u such that ux ∈ U .
7



Since P (x) is dense in X, there is y ∈ P (x) ∩ U . As (X, T ) is minimal, by the fact
mentioned before there is some minimal idempotent u such that y = ux. Thus for
any opene set U of X there is some minimal idempotent u such that ux ∈ U , i.e. (6)
holds.

(6) ⇒ (5): It is obvious.
(5) ⇒ (7): Let x ∈ X and U be any opene set of X. As (5) holds there is some

idempotent u such that y = ux ∈ U . Hence for any neighborhood V of y, N(x, V ) ∩
N(y, V ) ∈ B. Let U0 = U . Take natural number p1 ∈ N(x,U0) ∩ N(y, U0) and
U1 = U0 ∩ T−p1U0. Then y ∈ U1. By induction, we can construct pi, Ui, i ∈ N such
that natural number pi ∈ N(x,Ui−1) ∩N(y, Ui−1) and y ∈ Ui = Ui−1 ∩ T−pi−1Ui−1.
By the above construction, it is easy to that N(x,U) ⊃ FS({pi}+∞i=1 ) and hence
N(x,U) contains an IP-set.

(7) ⇒ (1): Let U1, U2, V1, V2 be opene subsets of X. Then by the definition

N(U1 × V1, U2 × V2) = {n ∈ Z+ : (T × T )−n(U2 × V2) ∩ (U1 × V1) 6= ∅}.

As (X, T ) is minimal , there is k ∈ Z+ such that V = T−kV2∩V1 is a opene subset
of X. Thus,

N(U1 × V1, U2 × V2)

= {n ∈ Z+ : (T × T )−n(U2 × V2) ∩ (U1 × V1) 6= ∅}
⊃ k + {m ∈ Z+ : (T−(m+k)U2 ∩ U1)× (T−(m+k)V2 ∩ V1) 6= ∅}
⊃ k + {m ∈ Z+ : (T−mT−kU2 ∩ U1)× (T−mV ∩ V ) 6= ∅}
= k + N(U1, T

−kU2) ∩N(V, V ).

Let x ∈ U1. Then N(U1, T
−kU2) ⊃ N(x, T−kU2) contains an IP-set, generated by

{p1, p2, . . . }. Take any invariant measure µ of (X, T ). As (X, T ) is minimal, one has
µ(V ) > 0.
Claim: Let A be a Borel set with µ(A) > 0. Then for any IP-set S, there exists
n ∈ S such that µ(A ∩ T−nA) > 0.

Proof of claim. Let S be an IP-set generated by p1, p2, p3, · · · . Since µ is a probability
measure and µ(T−(p1+p2+···+pj)A) = µ(A) > 0 for each j ∈ N, there exist j1 < j2
such that µ(T−(p1+p2+···+pj1 )A ∩ T−(p1+p2+···+pj2 )A) > 0. Thus µ(A ∩ T−nA) > 0
for n = pj1+1 + · · ·+ pj2 . This ends the proof of claim.

By the above claim, there is n ∈ N(U1, T
−kU2) with µ(V ∩ T−nV ) > 0, i.e,

n ∈ N(V, V ). Hence N(U1, T
−kU2)∩N(V, V ) 6= ∅. Moreover, N(U1×V1, U2×V2) 6= ∅.

As U1, U2 and V1, V2 are arbitrary, (X × X, T × T ) is transitive. This shows that
(X, T ) is weakly mixing. ¤
Remark: Among the mixing properties, weak mixing is the weakest one and strong
mixing is the strongest one. Now we have that in the minimal case weak mixing is
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equivalent to thickly syndetic transitivity and strong mixing is equivalent to cofinite
transitivity. As the set of all thickly syndetic set and the set of all cofinite set are
both filters, this in some sense explains why we require F to be a filter in Theorem
3.4.

§4 other conditions for which the converse of Theorem 3.2 holds

In the previous section we have shown that for a full family F if a TDS (X, T ) is F-
mixing then for each x ∈ X and each S ∈ kF , PS(x) is dense, and the converse holds
when (X, T ) is minimal and F is a filter. In this section we will give more conditions
such that the converse of Theorem 3.2 holds. First we discuss the situation when
(X, T ) is an E-system.

To do this, first let us recall some notion. Let {pi}∞i=1 ⊂ N and FS({pi}∞i=1) :=
{pi1 + pi2 + · · · + pik

: k ∈ N, 1 ≤ i1 < i2 < · · · < ik}. A set A ⊂ N is called an
IP-set if it equals to some FS({pi}∞i=1). Denote the family generated by all IP-sets
by FIP or IP . By Hindman’ Theorem [H] FIP has Ramsey property and hence its
dual family F∗IP is a filter (every element in F∗IP is called an IP ∗-set ).

A TDS (X, T ) is said to be mild mixing if it is weakly disjoint from any transitive
system, i.e. for any transitive system (Y, S), (X × Y, T × S) is transitive. For a
subset S of Z+, let S − S = {s − t : s, t ∈ S and s ≥ t}. If F is a family let
F − F = {S − S : S ∈ F}. It is showed in [HY2] that (X, T ) is mild mixing if
and only if it is k(FIP −FIP )-transitive. Consequently, IP∗-transitivity implies mild
mixing.

The following lemma which is a special case of a Furstenberg and Katznelson’s
theorem [FK] will be used.

Lemma 4.1. Let (X, T,B, µ) be an invertible m.p.s.. and A be a Borel set with
µ(A) > 0. Then for any IP-set S, there exists n ∈ S such that µ(A∩T−nA∩TnA) >
0.

Now we are ready to show.

Theorem 4.2. Let (X, T ) be a TDS, and assume that (X, T ) has an invariant mea-
sure µ with Supp(µ) = X. Then
1. (X, T ) is strongly mixing iff for each S ∈ B and each x ∈ X, PS(x) is dense.
2. (X, T ) is IP∗-mixing iff for each IP-set S and each x ∈ X, PS(x) is dense.
3. (X, T ) is mild-mixing iff for each IP-set S and each x ∈ X, PS−S(x) is dense.

Proof. (1) It remains to show that if for each S ∈ B and each x ∈ X, PS(x) is dense,
then (X, T ) is strongly mixing. Let U, V be opene sets of X. Take an opene set
V1 ⊂ V with V1 ⊂ V . Let S = {s1, s2, . . . } ∈ B and Ak = ∪∞i=kT−si(V1). Then Ak

is a decreasing sequence of open sets on k. As there is an invariant measure µ with

full support, µ(Ak) ≥ µ(V1), k = 1, 2, . . . . This implies that µ(
∞⋂

k=1

Ak) ≥ µ(V1) > 0
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and hence
∞⋂

k=1

Ak 6= ∅. Take x ∈
∞⋂

k=1

Ak. Thus there is S1 ⊂ S and S1 ∈ B such that

Tn(x) ∈ V1 for n ∈ S1.
As PS1(x) is dense, there are y ∈ U , S2 ⊂ S1 and S2 ∈ B such that
lim

S23n→∞
d(Tn(x), Tn(y)) = 0. This implies that there is n ∈ S such that Tn(y) ∈ V .

Consequently, N(U, V ) ∩ S 6= ∅. Since S ∈ B is arbitrary, this implies that N(U, V )
is cofinite, i.e. (X, T ) is strongly mixing.

(2) It remains to show that if for each IP-set S and each x ∈ X, PS(x) is dense,
then (X, T ) is IP∗-transitive. First, we have

Let U, V be opene subsets of X. As Supp(µ) = X, µ(V ) > 0 and there exists a
closed set A1 ⊂ V with µ(A1) > 0. For any IP-set S, generated by p1, p2, p3, · · · ,
by claim there exists q1 = pj1

1
+ · · · + pj1

k1
with j1

1 < j1
2 < · · · < j1

k1
such that

µ(A1 ∩ T−q1A1) > 0.
Set A2 = A1 ∩ T−q1A1 and let S1 be the IP-set generated by pj1

k1
+1, pj1

k1
+2, · · · .

Then A2 ⊂ A1 is a closed subset of X with µ(A2) > 0. By a similar argument,
there exists q2 = pj2

1
+ · · · pj2

k2
with j1

k1
+ 1 ≤ j2

1 < j2
2 < · · · < j2

k2
such that

µ(A2 ∩ T−q2A2) > 0.
By induction, we can construct Al+1 = Ak∩T−qlAk and ql+1 = pjl+1

1
+ · · ·+pjl+1

kl+1

with jl
kl

+ 1 ≤ jl+1
1 < jl+1

2 < · · · < jl+1
kl+1

such that Al+1 ⊂ Al is a closed subset with
µ(Al+1 ∩ T−ql+1Al+1) > 0.

Now as µ(Ak) > 0, Ak is a non-empty closed set. Noting that A1 ⊃ A2 ⊃ A3 ⊃ · · · ,
one has

⋂+∞
k=1 Ak 6= ∅. Let S′ be the IP-set generated by q1, q2, q3, · · · . Then S′ ⊂ S.

Choose x ∈ ⋂+∞
k=1 Ak. It is easy to see that x ∈ ⋂

n∈S′ T
−nA1. Hence N(x,A1) ⊃

S′. As PS′(x) is dense, there are y ∈ U , S′′ ⊂ S′ such that lim
S′′3n→∞

d(Tn(x), Tn(y)) =

0. This implies that there is n ∈ S such that Tn(y) ∈ V . Consequently, N(U, V )∩S 6=
∅. This implies that N(U, V ) is an IP∗-set, i.e. (X, T ) is IP∗-transitive. Moreover,
as the family consisting of IP∗-sets is a filter, (X, T ) is IP∗-mixing.

(3) Without loss of generality, we assume that T is a homeomorphism. It remains
to show that if for each IP-set S and each x ∈ X, PS−S(x) is dense, then (X, T ) is
mild mixing.

Let U, V be opene subsets of X. As Supp(µ) = X, µ(V ) > 0, there exists a
closed set A1 ⊂ V with µ(A1) > 0. For any IP-set S, generated by p1, p2, p3, · · · ,
by Lemma 4.1 there exists q1 = pj1

1
+ · · · + pj1

k1
with j1

1 < j1
2 < · · · < j1

k1
such that

µ(A1 ∩ T−q1A1 ∩ T q1A1) > 0.
Set A2 = A1 ∩ T−q1A1 ∩ T q1A1 and let S1 be the IP-set generated by

pj1
k1

+1, pj1
k1

+2, · · · . Then A2 ⊂ A1 is closed subset of X with µ(A2) > 0. Simi-

larly, there exists q2 = pj2
1

+ · · · pj2
k2

with j1
k1

+ 1 ≤ j2
1 < j2

2 < · · · < j2
k2

such that
µ(A2 ∩ T−q2A2 ∩ T q2A2) > 0.
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By induction, we can construct Al+1 = Al ∩ T−qlAl ∩ T qlAl and ql+1 = pjl+1
1

+

· · ·+ pjl+1
kl+1

with jl
kl

+ 1 ≤ jl+1
1 < jl+1

2 < · · · < jl+1
kl+1

such that Al+1 ⊂ Al is a closed

subset with µ(Al+1 ∩ T−ql+1Al+1 ∩ T ql+1Al+1) > 0.
Now as µ(Ak) > 0, Ak is a non-empty closed set. Noting that A1 ⊃ A2 ⊃ A3 ⊃ · · · ,

one has
⋂+∞

k=1 Ak 6= ∅. Let S′ be the IP-set generated by q1, q2, q3, · · · . Then S′ ⊂ S.
Take x ∈ ⋂+∞

k=1 Ak. It is easy to see that x ∈ ⋂
n∈S′−S′ T

−nA1. Hence N(x,A1) ⊃
S′ − S′. As PS′−S′(x) is dense, there are y ∈ U , S′′ ⊂ S′ such that

lim
S′′3n→∞

d(Tn(x), Tn(y)) = 0. This implies that there is n ∈ S such that Tn(y) ∈ V .

Consequently, N(U, V )∩ (S−S) 6= ∅. This implies that N(U, V ) is an k(FIP −FIP )-
set, i.e. (X, T ) is mild mixing. ¤

Now we discuss the question under which conditions a TDS is weakly mixing.

A TDS is said to be totally transitive if (X, Tn) is transitive for all n ∈ N. It is
known that if (X, T ) is minimal then (X, T ) is weakly mixing iff for each x ∈ X,
P (x) is dense (see previous section). Now we have

Theorem 4.3. Let (X, T ) be a TDS.
1 If (X, T ) has dense minimal points and P (x) is dense for each x ∈ X then (X, T )

is weakly mixing.
2 If (X, T ) is totally transitive and for each open U there is p ∈ N such that

N(U,U) ⊃ pN, then (X, T ) is weakly mixing. Consequently, if (X, T ) is totally
transitive and the set of periodic points is dense then (X, T ) is weakly mixing.

Proof. (1). If (x, y) is proximal, then for any ε1 > 0, {n ∈ Z+ : d(Tn(x), Tn(y)) <
ε1} is a thick set. It follows that if (x, y) is proximal, then (x, y) is S-proximal
for any syndetic set of Z+. Let U, V be open subsets of X. As (X, T ) has dense
minimal points, there is a minimal point x ∈ V and Bε(x) ⊂ V for some ε > 0.
Set V1 = Bε/2(x). It is clear that S = N(x, V1) is syndetic. There is y ∈ U such
that (x, y) is S-proximal. That is, there is n ∈ S such that d(Tn(x), Tn(y)) ≤ ε/2.
As d(Tn(x), x) < ε/2, we conclude that Tn(y) ∈ V . As x ∈ V and Tn(x) ∈ V ,
n ∈ N(V, V ). Thus n ∈ N(V, V )∩N(U, V ). This implies that N(V, V )∩N(U, V ) 6= ∅
for each opene subset U, V of X and hence (X, T ) is transitive.

Now we show that (X, T ) is weakly mixing. Let U1, U2, V1, V2 be opene subsets of
X. It is similar to the proof of (7) ⇒ (1) in Theorem 3.6, there exists k ∈ Z+ such
that V ′ = T−kV2 ∩ V1 is a opene subset of X and

N(U1 × V1, U2 × V2) ⊃ k + N(U1, T
−kU2) ∩N(V ′, V ′).

Since (X, T ) is transitive, there is m ∈ Z+ such that T−(m+k)U2 ∩ V ′ 6= ∅. Let
V = T−(m+k)U2 ∩ V ′ and U = TmU1. Then

N(U1, T
−kU2) ∩N(V ′, V ′) = N(T−mU1, T

−(m+k)U2) ∩N(V ′, V ′)

⊃ N(U, V ) ∩N(V, V ) 6= ∅.
11



Therefore N(U1 × V1, U2 × V2) 6= ∅. Hence (X, T ) is weakly mixing.

(2). Let U, V be open subsets of X. As (X, T ) is totally transitive, for each p ∈ N,
N(U, V )∩ pN 6= ∅. Thus N(U,U)∩N(U, V ) 6= ∅ and hence (X, T ) is weakly mixing.
¤

The following example shows that the assumption of Theorem 4.3 is reasonable.

Example 4.4. There exists an E-system (X, T ) such that P (x) is dense for each
x ∈ X, but (X, T ) is not weakly mixing. Moreover, a totally transitive M -system is
not necessarily weakly mixing.

Proof. Let (Y, S) be an E-system but not an M -system and be not weakly mixing.
Collapsing the closure of minimal points of (Y, S) to a point, we get a factor system
(X, T ) of (Y, S). (X, T ) is a non-trivial E-system, has only a unique minimal point
which is a fixed point and is not weakly mixing. Since (X, T ) has a unique minimal
point which is a fixed point, so any pair of X ×X is proximal.

Now let us see how to obtain such a system (Y, S). Choose a set A with positive
upper Banach density but being not piecewise syndetic. Let X = Orb(1A, σ) ⊆
{0, 1}Z+ , where 1A is the indication function of A. Then as A has positive upper
Banach density there is some ergodic measure ν with ν([1]) > 0, where [1] = {w ∈
X : w(0) = 1} (see Proposition 3.17 of [F2]). Let Y = suppν and S = σ. Then
(Y, S) is an E−system. Since A is not piecewise syndetic, (Y, S) has (0, 0, · · · ) as its
only minimal set and hence it is not an M -system. If (Y, S) is not weakly mixing we
are done. If it is, then we product it with a minimal irrational rotation of the circle.
Then the resulting system is a non-weakly mixing system and it is still an E−system
but not an M− system.

Let S1 be the unit circle in the complex plane and T be a rotation so that (S1, T )
is a minimal system. It is a totally transitive M -system is not weakly mixing. ¤

Example 4.4 tells us that for an E-system Theorem 4.3 is no longer true. Nev-
ertheless, we can get similar results by strengthening the assumption on proximal
cells. First, we express Theorem 4.3 in another form. To do this, we note that the
following two facts.
Fact 1. (x, y) is proximal iff (x, y) is S-proximal for any syndetic set S.
Fact 2. A point x ∈ X is syndetic recurrent iff it is a minimal point. Moreover,
(X, T ) has dense minimal points iff (X, T ) has dense syndetic recurrent points.

By above two facts, Theorem 4.3 can be expressed as follows: if (X, T ) has dense
syndetic recurrent points and PS(x) is dense for each x ∈ X and syndetic set S then
(X, T ) is weakly mixing. In general, we have

Theorem 4.5. Let (X, T ) be a TDS and F be a family. If the set of all F-recurrent
points is dense in X and PS(x) is dense for each x ∈ X and S ∈ F , then (X, T ) is
weakly mixing.

Proof. Let U, V be opene subsets of X. As (X, T ) has dense F-recurrent points,
there is a F-recurrent point x ∈ V and Bε(x) ⊂ V . Set V1 = Bε/2(x). It is clear
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that S = N(x, V1) ∈ F . There is y ∈ U such that (x, y) is S-proximal. That is,
there is n ∈ S such that d(Tn(x), Tn(y)) ≤ ε/2. As d(Tn(x), x) < ε/2, we conclude
that Tn(y) ∈ V . As x ∈ V and Tn(x) ∈ V , n ∈ N(V, V ). This implies that
N(V, V ) ∩N(U, V ) 6= ∅ and hence (X, T ) is weakly mixing. ¤

The following two corollaries are immediately.

Corollary 4.6. Let (X, T ) be a TDS. If (X, T ) has an invariant measure µ with
Supp(µ) = X and PS(x) is dense for each x ∈ X and positive upper density set S,
then (X, T ) is weakly mixing.

Proof. By Theorem 4.5, it remains to show that (X, T ) has dense positive upper
density-recurrent points. Let µ =

∫
Ω

µωdm(ω) be the ergodic decomposition of µ.
Given an opene subset U of X, as µ(U) > 0, there exists an ergodic measure µω with
µω(U) > 0. Take a generic point y ∈ U for µω. Then y is a positive upper density-
recurrent point. As U is arbitrary, (X, T ) has dense positive upper density-recurrent
points. ¤

Corollary 4.7. Let (X, T ) be a TDS and R(T ) be the set of all recurrent points of
X. If R(T ) = X and PS(x) is dense for each IP-set S ⊂ Z+ and each x ∈ X, then
(X, T ) is weakly mixing.

Proof. Note that if R(T ) = X, then (X, T ) has dense IP-recurrent points by Lemma
2.1. Then corollary 4.7 follows from Theorem 4.5. ¤

Remark 4.8. Without the assumption of R(T ) = X Corollary 4.7 may be false.
For example, let T be a translation of Z. Then the induced map T on the one point
compactification of Z satisfies the condition (?): PS(x) is dense for each S ∈ B and
each x ∈ X, but it is not weakly mixing, even not transitive.

It is an open question if a system satisfying the assumption of condition ? and
transitivity is strongly mixing.

§5 The structure of the proximal cells

We discuss the structure of the proximal cells of F-mixing systems in this section.
In [HY1] the authors showed that if a non-periodic transitive system contains a
periodic point, then there is an uncountable scrambled set. Recently Mai [M] gave a
constructive proof of the fact. Inspired by his method, we now describe the structure
of proximal cells of F- mixing systems, which deeps our understanding of proximal
cells.

First we introduce some notions appeared in our theorem. If X, Y are topological
spaces, then we denote by C(X, Y ) the set of all continuous maps from X to Y .

Definition 5.1. Let (X, T ) be a TDS and S ∈ B. A subset C of X is called a
Kronecker subset with respect to S if C is a Cantor set and for every g ∈
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C(C, X) and ε > 0 there exists a positive integer n ∈ S such that d(g(x), Tn(x)) < ε
for all x ∈ C, i.e. {Tn|C : n ∈ S} is uniformly dense in C(C, X).

A subset K of X is a chaotic set with respect to S if for every g ∈ C(K,X)
there is a subsequence {qi} ⊂ S such that lim

i→∞
T qi(x) = g(x) for every x ∈ K, i.e.

{Tn|K : n ∈ S} is pointwise dense in C(K, X).

By the above definition, it is easy to see that a Kronecker subset with respect to
S must be a chaotic set with respect to S.

Theorem 5.2. Let (X, T ) be a non-trivial TDS and F be a full family. If it is F-
mixing, then for any x ∈ X and any S ∈ kF there are Cantor sets C1 ⊆ C2 ⊆ · · ·
such that:

(i) K =
∞⋃

n=1

Cn is dense in X.

(ii) There are {kn} ⊆ S such that diamT kn(Cn ∪ {x}) → 0, n → +∞.
(iii) For any n ∈ N, Cn is a Kronecker set respect to S.
(iv) K is a chaotic set with respect to S.

Proof. As (X, T ) is a non-trivial F-mixing system, X has no isolated points. Let Y =
{y1, y2, · · · } be a countable dense subset of X and Yn = {y1, y2, · · · , yn}. Let F ′ be
the smallest family containing {N(U, V ) : U, V are opene sets of X}. As (X, T ) is
F-mixing, F ′ is a filter.

Let {On}∞n=1 be a countable base of X, a0 = 0 and V0 = X. We have the following
claim.
Claim: There are {an} ⊆ N, {kn} ⊆ S, opene subsets {Un}∞n=1 and
{Vn,1, Vn,2, · · · , Vn,an

}∞n=1 of X such that:
(1) 2an−1 ≤ an ≤ 2an−1 + n.
(2) diamVn,i < 1

n , i = 1, 2, . . . , an.
(3) The closures {Vn,i}an

i=1 are pairwise disjoint.
(4) Vn,2i−1 ∪ Vn,2i ⊂ Vn−1,i, i = 1, 2, · · · , an−1.

(5) Yn ⊂ B(
an⋃

i=1

Vn,i,
1
n

), where B(A, ε) := {x ∈ X : d(x,A) < ε} .

(6) diamUn < 1
n and S ∩N(x,Un) ∈ kF ′.

(7) T knx ∈ Un and T knVn,j ⊆ Un, j = 1, 2, · · · , an.
(8) For any α ∈ {1, 2, · · · , an}an there is m(α) ∈ S such that

Tm(α)Vn,i ⊆ Oα(i), i = 1, 2, · · · , an.

Proof of the Claim: For n ∈ N, let {G(n)
j }bn

j=1 be a finite open cover of X with

diamG
(n)
j < 1

n , j = 1, 2, · · · , bn and S ∈ kF . As S = S ∩ Z+ =
bn⋃

j=1

(S ∩N(x,G
(n)
j ))
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and S ∈ kF ⊆ kF ′, there is some j0 ∈ {1, 2, · · · , bn} such that S ∩N(x,G
(n)
j0

) ∈ kF ′
since kF ′ has Ramsey property. We set Un = G

(n)
j0

, n ∈ N. Then {Un} satisfies (6).
Let a1 = 1 and W1,1 be a neighborhood of y1 with diamW1,1 < 1. As N(W1,1, U1)

∈ F ′ and S ∩ N(x,U1) ∈ kF ′ there is some k1 ∈ S ∩ N(x,U1) ∩ N(W1,1, U1). It
is clear that T k1x ∈ U1. Moreover, there is an opene set W ′

1,1 ⊆ W1,1 such that
T k1W ′

1,1 ⊆ U1. Since N(W ′
1,1, O1)∩S 6= ∅, we can take some m(1) ∈ N(W ′

1,1, O1)∩S.
Then there is some opene set V1,1 ⊆ W ′

1,1 such that Tm(1)V1,1 ⊆ O1.
Assume for 1 ≤ j ≤ n− 1 we have {aj}n−1

j=1 , {kj}n−1
j=1 and {Vj,1, Vj,2, · · · , Vj,aj}n−1

j=1

satisfying conditions (1)-(8).
We take 2an−1 ≤ an ≤ 2an−1 + n and opene subsets Wn,1,Wn,2, · · · ,Wn,an of X

such that
(9) diamWn,i < 1

2n , i = 1, 2, · · · , an.
(10) The closures {Wn,i}an

i=1 are pairwise disjoint.
(11) Wn,2i−1 ∪Wn,2i ⊂ Vn−1,i, i = 1, 2, · · · , an−1.

(12) Yn ⊂ B(
an⋃

i=1

Wn,i,
1
2n

).

As N(Wn,i, Un) ∈ F ′ for each 1 ≤ i ≤ an,
an⋂

i=1

N(Wn,i, Un) ∈ F ′. And as S ∩

N(x,Un) ∈ kF ′ there is some kn ∈ S ∩N(x,Un) ∩
an⋂

i=1

N(Wn,i, Un). Hence there are

opene sets W ′
n,i ⊆ Wn,i such that

(13) T knW ′
n,i ⊆ Un for each 1 ≤ i ≤ an.

We set {1, 2, · · · , an}an = {αi}tn
i=1, where tn = aan

n .

Since N(Πan
i=1W

′
n,i,Π

an
i=1Oα1(i)) =

an⋂

i=1

N(W ′
n,i, Oα1(i)) ∈ F ′, there is

m(α1) ∈ S ∩N(Πan
i=1W

′
n,i,Π

an
i=1Oα1(i)).

Then we can choose V
(1)
n,i ⊆ W ′

n,i such that

Tm(α1)V
(1)
n,i ⊆ Oα1(i), i = 1, 2, · · · , an.

Take
m(α2) ∈ S ∩N(Πan

i=1V
(1)
n,i ,Πan

i=1Oα2(i)).

Hence we can choose V
(2)
n,i ⊆ V

(1)
n,i such that

Tm(α2)V
(2)
n,i ⊆ Oα2(i), i = 1, 2, · · · , an.
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Assume for 1 ≤ j ≤ tn − 1, we have m(α1),m(α2), · · · ,m(αj) ∈ S and W ′
n,i ⊇

V
(1)
n,i ⊇ V

(2)
n,i ⊇ · · · ⊇ V

(j)
n,i such that Tm(αh)V

(h)
n,i ⊆ Oαh(i), i = 1, 2, · · · , an, h =

1, 2, · · · , j.
Take

m(αj+1) ∈ S ∩N(Πan
i=1V

(j)
n,i ,Πan

i=1Oαj+1(i)).

Hence we can choose V
(j+1)
n,i ⊆ V

(j)
n,i such that

Tm(αj+1)V
(j+1)
n,i ⊆ Oαj+1(i), i = 1, 2, · · · , an.

By induction we have {m(αj)}tn
j=1 and {V (j)

n,i }tn
j=1. Let Vn,i = V

(tn)
n,i , i = 1, 2, · · · , an.

Then (8) holds. This ends the proof of the claim.

Let Cn =
∞⋂

j=n

2j−nan⋃

i=1

Vj,i. Then C1 ⊆ C2 ⊆ · · · . By (1)-(4) Cn is a Cantor set. By

(2),(4) and (5), K =
∞⋃

n=1

Cn is dense in X. By (7) we have diamT kn(Cn ∪ {x}) →
0, n →∞.

Now, using (8) we are going to prove (iii). Let n ∈ N, g ∈ C(Cn, X) and ε > 0.
Since Cn is a compact set, there exists m ∈ N with m ≥ n such that if x, y ∈ Cn and
d(x, y) ≤ 1

m , then d(g(x), g(y)) < ε
2 . For every i ∈ {1, 2, · · · , 2m−nan}, we choose

xi ∈ Cn ∩ Vm,i. Note that when zi ∈ Vm,i, one has d(zi, xi) ≤ 1
m . So by the choosing

of m, when zi ∈ Vm,i ∩ Cn, one has d(g(zi), g(xi)) < ε
2 .

Since {On}∞n=1 is a countable base of X, for every i ∈ {1, 2, · · · , 2m−nan} there
exist ni ∈ N such that g(xi) ∈ Oni

and diam(Oni
) < ε

2 . Let M = max{n1, n2, · · · ,

n2m−nan
,m} and i(j) = [ j−1

2M−m ] + 1 for j ∈ {1, 2, · · · , 2M−nan}. By (8), there exist
k = k(n, ε) ∈ S such that T kVM,j ⊂ Oni(j) for every j ∈ {1, 2, · · · , 2M−nan}.

For each x ∈ Cn, there exists j ∈ {1, 2, · · · , 2M−nan} such that x ∈ VM,j . Thus
x ∈ Vm,i(j), therefore d(g(x), g(xi(j))) < ε

2 . Since T kx ∈ T kVM,j ⊂ Oni(j) , one has
d(T kx, g(xi(j))) ≤ diam(Oni(j)) ≤ ε

2 . Combining the two facts above, one gets

d(g(x), T k(x)) ≤ d(T kx, g(xi(j))) + d(g(x), g(xi(j))) < ε.

This shows that Cn is a Kronecker set with respect to S.
Finally, we show (iv). Set g ∈ C(K,X) and gn = g|Cn

∈ C(Cn, X) for every n ∈ N.
For each i ∈ N, by (iii) there exists qi ∈ S such that d(gi(x), T qix) < 1

i for x ∈ Ci.
As C1 ⊂ C2 ⊂ C3 · · · and K =

⋃+∞
i=1 Cn, one has limi→+∞ T qi(x) = g(x) for x ∈ K.

¤
Remark: 1. A subset C of X is called a Xiong-chaotic set with respect to
S ⊂ Z+ if for any subset A of C and for any continuous map F : A → X there
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is a subsequence {qi} ⊂ S such that lim
i→∞

T qi(x) = F (x) for every x ∈ A ([XY]).

The authors showed if (X, T ) is a dynamical system where X is a separable locally
compact metric space containing at least two points, then (X, T ) is weakly mixing
if and only if there are some infinite set S and c−dense Fσ−subset C of X, which
is chaotic with respect to S. In fact we can show that the K in Theorem 5.2 is a
Xiong-chaotic set with respect to S and a proof is included in the appendix.

2. In [Ak1,Ak2] the author discussed the Kronecker set in weakly mixing systems.
Our results tell more about Kronecker sets of weakly mixing systems and the proof
presented here is totally different from [Ak1,Ak2].

Corollary 5.3. Let (X, f) be a TDS and F be a full family. Then (X, f) is F-mixing
if and only if for any S ∈ kF there is a dense subset C of X, which is chaotic with
respect to S.

§6 Appendix

Recall a subset C of X is called a Xiong-chaotic set with respect to S ⊂ Z+ if for
any subset A of C and for any continuous map F : A → X there is a subsequence
{qi} ⊂ S such that lim

i→∞
T qi(x) = F (x) for every x ∈ A. Xiong and Yang character-

ized weak mixing and strong mixing in terms of chaoticity. A similar characterization
for F-mixing systems was obtained in [SY] using Xiong-Yang’s method. Now we gave
another proof of the fact using the method developed in the previous section. Note
that this proof is simpler than the one giving by Xiong and Yang [XY].

Theorem. If (X, T ) is a dynamical system where X is a separable locally compact
metric space containing at least two points and F is a full family, then (X, T ) is
F-mixing if and only if for any S ∈ kF there is c−dense Fσ−subset K of X which
is Xiong-chaotic with respect to S.

Proof. We show the necessity and the sufficiency is easy.
As X is a F−mixing system with at least two points, there are no isolated points

for X. Let {Oi} be an open countable base of X. And in addition we can assume
{diamOi} is a decreasing sequence which tends to zero. To see this, observe first that
we have a base {O′i} such that O′i is compact for each i ∈ N. Then for each i ∈ N,
Ai = O′1 ∪ . . . ∪O′i has a finite open cover Ai the diameter of each element of which
is less than 1

i . List the elements of Ai to form a sequence {Oi}, then {Oi} is the one
we need. By the proof of Theorem 5.2 we have the following fact (a0 = 0, V0 = X ):
Fact: There are {an} ⊆ N, {kn} ⊆ S and opene subsets {Vn,1, Vn,2, · · · , Vn,an}∞n=1

of X such that:
(1) 2an−1 ≤ an ≤ 2an−1 + n.
(2) diamVn,i < 1

n , i = 1, 2, . . . , an.
(3) The closures {Vn,i}an

i=1 are pairwise disjoint compact subsets of X.
(4) Vn,2i−1 ∪ Vn,2i ⊂ Vn−1,i, i = 1, 2, · · · , an−1.
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(5) Yn ⊂ B(
an⋃

i=1

Vn,i,
1
n

), where B(A, ε) := {x ∈ X : d(x,A) < ε} .

(6) For any α ∈ {1, 2, · · · , an}an there is m(α) ∈ S such that

Tm(α)Vn,i ⊆ Oα(i), i = 1, 2, · · · , an.

Let Cn =
∞⋂

j=n

2j−nan⋃

i=1

Vj,i. Then C1 ⊆ C2 ⊆ · · · . And let K =
∞⋃

n=1

Cn.

Now we show that for any subset A of K and for any continuous map F : A → X
there is a subsequence {qi} ⊂ S such that lim

i→∞
T qi(x) = F (x) for every x ∈ A.

Let An = {x ∈ A : there is some 1 ≤ i ≤ n and 1 ≤ ax ≤ an such that x ∈
Vn,ax ∩ A ⊆ F−1(Oi)} (Note that An may be empty when n is small). It is easy to
see that A1 ⊆ A2 ⊆ · · · ⊆ A and

⋃+∞
n=1 An = A. If An is not empty, then let

{Vn,j : ∃x ∈ An and 1 ≤ i ≤ n such that x ∈ Vn,j ∩A ⊂ F−1(Oi)}
= {V

n,i
(n)
1

, V
n,i

(n)
2

, · · · , V
n,i

(n)
bn

}, where 1 ≤ i
(n)
1 < i

(n)
2 < · · · < i

(n)
bn

≤ an.

Let αn ∈ {1, 2, · · · , an}an be any one with αn(i(n)
j ) = max{1 ≤ k ≤ n : V

n,i
(n)
j
∩

A ⊆ F−1(Ok)}, 1 ≤ j ≤ bn. And let qn = m(αn).
Now we show lim

i→∞
T qi(x) = F (x) for every x ∈ A.

Let ε > 0 and there is some N ∈ N such that diamOn < ε when n > N . Fix x ∈ A.
Take t > N such that Ot is a neighborhood of F (x). As F is continuous, F−1(Ot)
is an open neighborhood of x in A. Thus there is some nt > t and 1 ≤ ax ≤ ant

such that x ∈ Vnt,ax
∩ A ⊆ F−1(Ot) by (2). By (4), for each j ∈ N there is some

1 ≤ aj
x ≤ ant+j such that

x ∈ Vnt+j,aj
x
∩A ⊆ Vnt,ax ∩A ⊆ F−1(Ot). (7)

Thus αnt+j(aj
x) ≥ t > N for each j ∈ N. Moreover, by the definition of {qn} we have

for any j ∈ N
T qnt+j Vnt+j,aj

x
= Tm(αnt+j)Vnt+j,aj

x
⊆ Oαnt+j(a

j
x), (8)

and
x ∈ Vnt+j,aj

x
∩A ⊆ F−1(Oαnt+j(a

j
x)). (9)

By (9) we have F (x) ∈ Oαnt+j(a
j
x) 6= ∅. By (8) T qnt+j x ∈ Oαnt+j(a

j
x). Hence we have

for each j ∈ N
d(T qnt+j x, F (x)) ≤ diam(Oαnt+j(a

j
x)) < ε.

That is lim
i→∞

T qi(x) = F (x). ¤
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