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Abstract. A topological system (X, f) is F−transitive if for each pair of opene subsets

U and V of X, Nf (U, V ) = {n ∈ Z+ : fnU ∩ V 6= ∅} ∈ F , where F is a collection

of subsets of Z+ which is hereditary upward. (X, f) is F−mixing if (X × X, f × f)
is F−transitive. In this paper F−mixing systems are characterized in terms of the

chaoticity of the systems. Moreover, weak disjointness is studied via family. We will

give conditions such that a dual theorem of the Weiss-Akin-Glasner theorem holds.
Examples with this dual theorem fails for some “good” families are obtained.

Introduction

By a topological dynamical system (TDS, for short) we mean a pair (X, f), where
X is a compact metric space and f a surjective continuous map from X to itself. The
notion of disjointness of two TDS was introduced by Furstenberg [F1], and a weaker
notion, namely weak disjointness appeared later in [P]. The two notions are very much
related at least for minimal systems. Let (X, f) be a TDS. (X, f) is (topologically)
transitive if for each pair of opene (i.e. open and nonempty) subsets U, V there is
some n ≥ 1 such that fn(U)∩ V 6= ∅. Set Nf (U, V ) = {n ∈ Z+ : fnU ∩ V 6= ∅}. Two
TDS are said to be weakly disjoint if their product is transitive. Recently the authors
in [BHM] gave a notion known as scattering. Though this notion was introduced
using the complexity of open covers, it is equivalent to the statement that it is weakly
disjoint from all minimal systems. This adds the evidence to the fact that weak
disjointness appears naturally in the study of dynamical systems.

The duality question is a natural question related to weak disjointness. Let P be a
dynamical property and let Pf be the dynamical property such that a system has Pf

if and only if it is weakly disjoint from any system having P . It is known Pfff = Pf
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[HY]. Thus it is interesting to know the dynamical properties P1 and P2 for which
Pf

1 = P2 and Pf
2 = P1. To do this we need to know a way to describe Pf when P

is known. It turns out that the family notion (see section 1) is a useful tool.
A family is a collection of subsets of Z+ which is hereditary upward. The idea

of family can be traced back to Gottschalk and Hedlund [GH]. It was exploited by
Furstenberg [F2] and was systematically treated by Akin [Ak]. Let us see how it can
be used to describe some known dynamical properties. Let (X, f) be a TDS. (X, f) is
(topologically) weakly mixing if (X ×X, f × f) is transitive, and it is (topologically)
strongly mixing if for each pair of opene subsets U, V there is N ∈ N such that
fn(U) ∩ V 6= ∅ for each n ≥ N . Thus we see that (X, f) is transitive iff Nf (U, V )
is infinite, it is weakly mixing iff Nf (U, V ) is thick (i.e. containing arbitrarily long
intervals of integers) [F1] and it is strong mixing iff Nf (U, V ) is cofinite for each pair
of opene subsets U, V of X.

The main goal of the paper is to study duality question using family notion. Gen-
erally (Pf)f = P does not hold. For examples, the systems which are weakly disjoint
from all strongly mixing systems are the transitives, but a system which is weakly
disjoint from all transitive systems needs not to be strongly mixing. In the case when
P is F-transitivity we will give some conditions such that (Pf)f = P holds. Using
the notion of F-mixing, we will give a charaterization of such a property using the
chaoticity of the system.

We organize the paper as follows. In section 1 we introduce the notations related to
family. In section 2 we discuss F-mixing and give a characterization of the property.
We study weak disjointness and the duality questions related to it in section 3, and
give conditions such that a dual theorem of the Weiss-Akin-Glasner theorem holds.
At the last section we analyze examples with this dual theorem fails for some “good”
families.

Acknowledgment While preparing the paper, we find R. Yang also gets Theorem
2.8 [Y]. We thank W. Huang for some stimulating discussions. The authors would
like to thank the referee for a variety of helpful suggestions concerning this paper.

§1 Preliminary

Firstly we recall some notations related to a family (for details see [F2], [Ak] and
[AG]). For a nonempty set A, denote by P(A) the collection of all subsets of A. For
simplicity let P = P(Z+), where Z+ is the set of non-negative integers. A subset F
of P is a family, if it is hereditary upwards. That is, F1 ⊂ F2 and F1 ∈ F imply
F2 ∈ F . A family F is proper if it is a proper subset of P, i.e. neither empty nor all
of P. It is easy to see that F is proper if and only if Z+ ∈ F and ∅ /∈ F . Any subset
A of P can generate a family [A] = {F ∈ P : F ⊃ A for some A ∈ A}. If a proper
family F is closed under intersection, then F is called a filter. For a family F , the
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dual family is

kF = {F ∈ P|Z+ \ F /∈ F} = {F ∈ P|F ∩ F ′ 6= ∅ for all F ′ ∈ F}.

kF is a family, proper if F is. Clearly,

k(kF) = F and F1 ⊂ F2 =⇒ kF2 ⊂ kF1. (1.1)

For families F1 and F2, let F1 · F2 = {F1 ∩ F2|F1 ∈ F1, F2 ∈ F2}. Thus we have
F1 ∪F2 ⊂ F1 · F2. It is easy to check that F is a filter iff F = F · F . Also, F1 · F2 is
proper iff F2 ⊂ kF1.

For i ∈ Z+ let gi : Z+ → Z+ be defined by gi(j) = i + j. A family F is called
translation invariant if for every i ∈ Z+, F ∈ F ⇔ g−i(F ) ∈ F . For a family F let

τF = {F ∈ P| ∩n
j=1 g−ij (F ) ∈ F for n ∈ N and each {i1, i2, · · · , in} ⊂ Z+}. (1.2)

F is a thick family if and only if τF = F , and it is easy to see τF is the largest thick
family contained in F . Let B the family of all infinite subsets of Z+. It is easy to see
that B is the largest proper translation invariant family and its dual kB, the family
of cofinite subset, is the smallest one.

A subset F of Z+ is thick if F ∈ τB, equivalently, F is thick if and only if it
contains arbitrarily long runs of positive integers. Each element of kτB is said to
be syndetic or relatively dense. F is syndetic if and only if there is N such that
{i, i + 1, · · · , i + N} ∩ F 6= ∅ for every i ∈ Z+. The set in τkτB is called replete or
thickly syndetic. F ∈ τkτB if and only if for every N the positions where length N
runs begin form a syndetic set. The set in kτkτB is called big or piecewise syndetic.
F ∈ kτkτB if and only if it is the intersection of a thick set and a syndetic set. All of
these families are translation invariant, and τkτB is a filter.

Let A be a subset of either Z+ or Z. The upper Banach density of A is

d∗(A) = lim sup
|I|→∞

|A ∩ I|
|I| , (1.3)

where I ranges over intervals of Z+ or Z and | · | denote the cardinality of the set.
The upper density of a subset A of Z+ is

d̄(A) = lim sup
N→∞

|A ∩ {0, 1, · · · , N − 1}|
N − 1

. (1.4)

(If A is subset of Z, then d̄(A) = lim sup
N→∞

|A ∩ {−N,−N + 1, · · · , N}|
2N + 1

). The lower

Banach density d∗(A) and the lower density d(A) are similarly defined. If d̄(A) =
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d(A), then we say A has density d(A). Using density we can define lots of interesting
families which we will introduce in the sequel.

Let (X, f) be a dynamical system and A,B ⊂ X. We define the hitting time set

Nf (A,B) = {n ∈ Z+|fn(A) ∩B 6= ∅}. (1.5)

A topological system (X, f) is F−transitive if for each pair of opene subsets U and
V of X Nf (U, V ) ∈ F . (X, f) is F−mixing if (X ×X, f × f) is F−transitive.

We say a family F can be realized by TDS if for every element A in F there
is some F−transitive system (X, f) and some opene subsets U, V of X such that
Nf (U, V ) ⊂ A. Set

rF =
⋃

(X,f) is
F−transitive

T(X,f), (1.6)

where T(X,f) = [{Nf (U, V ) : U, V are opene subsets of X}]. For any family F , by the
definition we have F ,
• rF can be realized by TDS, and
• a system is F−transitive iff it is rF−transitive, and
• F1−transitivity equals to F2−transitivity iff rF1 = rF2.

If a system (X, f) is F−transitive we will write (X, f) ∈ rF .

Property 1.1. Let F ,F1 and F2 be proper families. Then
(1) rF is a translation invariant family.
(2) F1 ⊂ F2 =⇒ rF1 ⊂ rF2.
(3) rrF = rF .
(4) for any family G with rF ⊂ G ⊂ F , we have rG = rF .
(5) If F1 and F2 can be realized by TDS, so is F1 · F2. In general for any F1,F2

r(F1 · F2) ⊃ r(rF1 · rF2) = rF1 · rF2.

Proof. (2), (3) and (4) are obvious. First we show (1), i.e. for every n ∈ Z+, F ∈
rF ⇔ g−n(F ) ∈ rF .

If F ∈ rF , then there is some F−transitive system (X, f) and some opene subsets
U, V of X such that Nf (U, V ) ⊂ F . Hence Nf (U, f−n(V )) = g−n(Nf (U, V )) ⊂
g−n(F ). Since Nf (U, f−n(V )) ∈ rF and rF is hereditary upwards, g−n(F ) ∈ rF .

Now assume g−n(F ) ∈ rF . Then there is some F−transitive system (X, f) and
some opene subsets U, V of X such that Nf (U, V ) ⊂ g−n(F ). Let h : (X̃, f̃) −→ (X, f)
be the natural extension of (X, f), i.e. X̃ = {(x1, x2, · · · ) : f(xi+1) = xi, xi ∈ X, i ∈
N} which is a subspace of the product space Π∞i=1X with the compatible metric dT

defined by dT ((x1, x2, · · · ), (y1, y2, · · · )) =
∑∞

i=1
d(xi,yi)

2i , f̃ : X̃ −→ X̃ is the shift
homeomorphism, i.e. f̃(x1, x2, · · · ) = (f(x1), x1, x2, · · · ) and h(x1, x2, . . . ) = x1.
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Then (X̃, f̃) is also F−transitive. Moreover,

Nf̃ (h−1(U), h−1(V )) = Nf (U, V ) ⊂ g−n(F ).

Since f̃ is a homeomorphism,

Nf̃ (f̃−n(h−1(U)), h−1(V )) = g−(−n)(Nf (U, V )) ⊂ F.

As (X̃, f̃) is F−transitive, F ∈ rF by the definition.
Now we show (5). For this purpose let F ∈ rF1 · rF2. Then F = F1 ∩ F2 with

Fi ∈ rFi, i = 1, 2. Hence there are TDS (Xi, fi) which is Fi−transitive and opene
sets Ui, Vi of Xi such that Nfi

(Ui, Vi) ⊂ Fi, i = 1, 2.
As rF1 · rF2 is a family, it is easy to see that f1 × f2 is rF1 · rF2−transitive.

Moreover,
Nf1×f2(U1 × U2, V1 × V2) ⊂ F1 ∩ F2 = F.

Thus r(rF1 · rF2) = rF1 · rF2. This implies r(F1 · F2) ⊃ r(rF1 · rF2) = rF1 · rF2. ¤
Generally speaking, F 6= rF , i.e. for a family F not every element of it can be

realized by a TDS. But there do exist cases when F = rF . The following W-AG
Lemma illustrates this situation:

Weiss-Akin-Glasner Lemma. ([AG]) Let F be a proper, translation invariant,
thick family and let A ∈ F . Then there exists a system (X, f) which is F-transitive
and there is an opene set U in X such that Nf (U,U) = A ∪ {0}.

Hence every proper translation invariant thick family F can be realized by TDS,
i.e. rF = F . And in this case if a system (X, f) is F−transitive we also denote it by
(X, f) ∈ F .

In the rest of the section we generalize the definition of F−mixing. We say (X, f)
has double property (DP for short), if (X ×X, f × f) has property P , where P is a
dynamical property. If property P1 is stronger than P2, then we denote it by P1 ≥ P2.
If a system (X, f) has property P , denote it by (X, f) ∈ P .

Property 1.2. Let P , P1 and P2 be properties which is inherited by factors. Then
1. DP ≥ P
2. If P1 ≥ P2, then DP1 ≥ DP2.
3. If D(DP ) = DP , then for every property P ′ with P ≤ P ′ ≤ DP we have DP ′ =

DP

Proof. (1) Let π : (X × X, f × f) → (X, f) and (X × X, f × f) have property P .
Since P is inherited by factors, (X, f) has property P .

(2) Obvious.
(3) On one hand, P ≤ P ′ implies DP ′ ≥ DP . On the other hand, P ′ ≤ DP

implies DP = DDP ≥ DP ′. So we have DP = DP ′. ¤
Now we discuss some examples:
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Examples 1.3. Let P and P ′ be dynamical properties.
(1) If P is F-transitivity, then DP stands for F−mixing.
(2) If P = (P ′)f, then (X, f) has DP iff (X ×X, f × f) is weakly disjoint from any

system having P ′.
(3) If P is minimality, then (X, f) has DP iff (X, f) is trivial.
(4) If P is semi-simplity, i.e. (X, f) ∈ P iff every point in X is minimal, then (X, f) ∈

DP iff (X, f) is distal.
(5) A system (X, f) is called n − rigid if the product system of n copies of (X, f)

is pointwise recurrent([AAB]). If P is 1-rigidity, then DP = 2 − rigidity and
generally DnP = D(Dn−1P ) = 2n − rigidity. We believe this offers an example
of a property P satisfying P � DP � DDP � D3P � · · · , though it is an open
question.

In section 2 we will discuss DP in the case P = F−transitivity.

§2 F− Mixing

In this section we study F-mixing. As F-transitivity is a residual property, so is
F-mixing, i.e. it is inherited by factors, almost one-to-one lifts and surjective inverse
limits (see [AG], Theorem 1.3 and Theorem 2.3). First we recall some classical results
on weak mixing ([Ak], [F1] and [Pt]).

Theorem 2.1. Let (X, f) be a dynamical system. Then the following statements are
equivalent.

(1) (X, f) is weakly mixing, i.e., (X ×X, f × f) is transitive.
(2) Nf (U,U) ∩Nf (U, V ) ∈ B, for all opene sets U, V in X.
(3) For all opene sets U1, U2, V1, V2 in X, there exist opene sets U, V in X such that

Nf (U, V ) ⊂ Nf (U1, V1) ∩Nf (U2, V2).
(4) {Nf (U, V )|U, V are opene sets in X} generates a filter.
(5) (X, f) is τB-transitive.

A family F is full if F · kF ⊂ B. If F is full then kB ⊂ F ⊂ B. If F is a filter,
then kB ⊂ F implies F is full (see [Ak]).

Theorem 2.2. ([Ak]) Let (X, f) be a dynamical system and F be a full family. Then
the following statements are equivalent.

(1) (X, f) is F-mixing.
(2) (X, f) is τF-transitive.
(3) (X, f) is F-transitive and weakly mixing.
(4) There exists a translation invariant filter F ′ ⊂ F such that (X, f) is F ′-transitive.

An immediate consequence is
6



Proposition 2.3. Let (X, f) be a dynamical system and F be a full family. If (X, f)
is F-mixing, then for every n ∈ N, (X(n), f (n)) is F-transitive, where X(n) = X ×
· · · ×X (n times) and f (n) = f × · · · × f (n times).

Proof. For every opene sets U1, U2, · · · , Un, V1, V2, · · · , Vn of X, we have N(U1×U2×
· · · × Un, V1 × V2 × · · · × Vn) =

n⋂

i=1

Nf (Ui, Vi) ∈ F by Theorem 2.2-(4). ¤

When P is F−trans we may say something concerning DP.

Theorem 2.4. Let F be a full family.
(1) If P is F-transitivity, then D2P = DP = F−mixing.
(2) Let P be a property with F−trans ≤ P ≤ F-mixing. Then DP = τF−trans = F-

mixing.

Proof. (1) As it is obvious that D2P ≥ DP , it remains to show DP ≥ D2P . Assume
that (X, f) has DP , i.e. F-mixing. By Proposition 2.3 we know (X(4), f (4)) is
F− trans. So by definition (X(2), f (2)) is F-mixing, i.e. DP . That is (X, f) has
D(DP ) = D2P . Hence DP ≥ D2P .

(2) Apply Proposition 1.2(3). ¤

By W-AG Lemma we can distinguish two different F-mixing systems:

Proposition 2.5. If F1 ( F2 are two proper, translation invariant, thick families,
then there exists a system which is F2-transitive (at the same time F2-mixing) but
not F1-transitive(F1-mixing).

Proof. Let A ∈ F2 \ F1. By W-AG Lemma there exists a system (X, f) which is
F2-transitive and there is an opene set U in X such that Nf (U,U) = A ∪ {0} ∈ F2.
As Nf (U,U) 6∈ F1, (X, f) is not F1−transitive. ¤

In [XY] the authors obtained some equivalence conditions for weak mixing and
strong mixing systems from viewpoint of chaoticity. Now we use Xiong-Yang’s Lemma
to get a similar equivalent condition for F- mixing systems.

Definition 2.6. Suppose f : X → X is a continuous map and F ⊂ Z+. A subset
C of X is a chaotic set with respect to F if for any subset A of C and for any
continuous map g : A → X there is a subsequence {qi} ⊂ F such that lim

i→∞
fqi(x) =

g(x) for every x ∈ A, i.e. {fn|A : n ∈ F} is pointwise dense in C(A,X).

Lemma 2.7. (Xiong-Yang)Let f : X → X be a continuous map, where X is a
separable locally compact metric space containing at least two points, and let F ⊂ N.
If for any opene sets A1, A2, · · · , Am and B1, B2, · · · , Bn and for any N > 0 there
is p ∈ F ∩ (N, +∞) such that fp(Ai) ∩ Bj 6= ∅ for any 1 ≤ i ≤ m, 1 ≤ j ≤ n (i.e.
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(
⋂

i,j Nf (Ai, Bj)) ∩ F ∩ (N, +∞) 6= ∅), then there is a c−dense Fσ−subset C of X
which is chaotic with respect to F .

Theorem 2.8. Let (X, f) be a dynamical system, where X is a separable locally
compact metric space containing at least two points and F be a full family. Then
(X, f) is F-mixing if and only if for any F ∈ kF there is c−dense Fσ−subset C of
X which is chaotic with respect to F .

Proof. If (X, f) is F-mixing, then by Theorem 2.1, 2.2 and Lemma 2.7 we get the
conclusion. Now we assume for any F ∈ kF , there is C satisfying the conditions
mentioned in the theorem. For any opene subsets U, V of X×X we choose (x1, x2) ∈
U ∩ (C×C) and (y1, y2) ∈ V . By the definition of C, there is a subsequence {qi} ⊂ F
such that lim

i→∞
fqi(x1) = y1 and lim

i→∞
fqi(x2) = y2. Hence Nf×f (U, V ) ∩ F 6= ∅. This

implies that Nf×f (U, V ) ∈ kkF = F . So (X, f) is F-mixing. ¤
We say that a dynamical system (X, f) is spatiotemporally chaotic or ST chaotic

for short if it is transitive and for any x ∈ X and every neighborhood U of x there is
y ∈ U such that (x, y) is Li-Yorke pair, i.e.

lim inf
n−→+∞

d(fn(x), fn(y)) = 0, lim sup
n−→+∞

d(fn(x), fn(y)) > 0.

The following theorem is proved in [K], here we give another proof using Theorem
2.8.

Theorem 2.9. Any strongly mixing system (X, f) is ST chaotic.

Proof. For any x ∈ X we show there is a dense set C such that for any y ∈ C, (x, y) is
a Li-Yorke pair. Let fni(x) → x1, where ni →∞. Choose x2 ∈ X with x2 6= x1 and
d(x1, x2) > δ, where δ < diam(X)/2. By Theorem 2.8 there is a c−dense Fσ−subset
C of X which is chaotic with respect to {ni}. Let g1, g2 ∈ C(C, X) such g1 ≡ x1 and
g2 ≡ x2. Then there are {n′i}, {n′′i } ⊂ {ni} such that for any y ∈ C, fn′i(y) → g1(y) =
x1 and fn′′i (y) → g2(y) = x2, i.e. fn′i(x, y) → (x1, x1) and fn′′i (x, y) → (x1, x2).
Particularly, we have lim inf d(fn(x), fn(y)) = 0, lim sup d(fn(x), fn(y)) ≥ δ. This
ends the proof. ¤

Note that it is not difficult to show that any minimal weakly mixing system is ST
chaotic, it remains open if weak mixing implies ST chaoticity.

§3 Weak Disjointness

For a dynamical property P , denote by (X, f) ∈ P the statement that (X, f) has
property P . Thus P also stands for the set of all systems having P . If two TDS
(X, f) and (Y, g) are weakly disjoint, we write (X, f)f (Y, g). And if P is a property,
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we write Pf for the set of all systems weakly disjoint from every (X, f) ∈ P . For a
dynamical property P stronger than transitivity it is easy to check that the following
basic facts([HY]):

P1 ⊂ P2 =⇒ Pf
2 ⊂ Pf

1 (3.1)

(Pf)f ⊃ P (3.2)

Pf = ((Pf)f)f (3.3)

Two dynamical properties P1 and P2 are symmetrically dual if Pf
1 = P2 and

Pf
2 = P1. By (3.3) for any property stronger than transitivity, Pf and Pff are

symmetrically dual. Generally speaking, Pf can not be described explicitly. Thus
we are interested in the following question: for which dynamical property P , we have
Pff = P and both P and Pf can be described explicitly.

As the question is too general we will restrict our attention to the case when
P = F−transitivity(F−trans, for short). The following theorem is very much related
to this question. Note that the theorem is first proved by Weiss [W] in some special
class and then is generalized to the following form by Akin and Glasner [AG].

Weiss-Akin-Glasner Theorem. Let F be a proper, translation invariant, thick
family. A dynamical system is kF-transitive if and only if it is weakly disjoint from
every F-transitive system.

Proof. We only need to show if (X, f) is not kF-transitive then there exists a F-
transitive system (Y, g) such that (X, f) and (Y, g) are not weakly disjoint. As (X, f)
is not kF-transitive, there is an opene set U ⊂ X with Nf (U,U) /∈ kF . So A =
Z+ \ Nf (U,U) ∈ F , and by W-AG Lemma there is F-transitive system (Y, g) and
an opene set V ⊂ Y such that Ng(V, V ) = A ∪ {0}. Hence Nf×g(U × V, U × V ) =
Nf (U,U)∩Ng(V, V ) = {0} /∈ B. That is, (X, f) and (Y, g) are not weakly disjoint. ¤

Let WM =weak mixing and TE = kτB−trans. Using W-AG theorem we have the
following simple observation.

Proposition 3.1. Let P be a dynamical property. Then
(1) There is no P such that P = Pf.
(2) If Pf ⊂ P , then Pf ⊂ WM .

Proof. First we show (2). Let (X, f) ∈ Pf. Then (X, f) is weakly disjoint from any
system from P . This implies that (X, f) f (X, f). Thus (2) holds.

Now assume that P is a dynamical property such that P = Pf. Then we have
P ⊂ WM . Thus by (3.1) and W-AG theorem

WM ⊃ P = Pf ⊃ WMf = TE,
9



But this inclusion is false since any nontrivial, equicontinuous, minimal system is TE
but not WM. This ends the proof of (1). ¤

Recall a system (X, f) is F−transitive iff it is rF− transitive. For a proper trans-
lation invariant thick family F , we have F = rF and by W-AG theorem

(F−trans)f = kF−trans (3.4)

and
(F−trans)ff = (kF−trans)f ⊃ F−trans. (3.5)

To prove Theorem 3.3 we need

Lemma 3.2. Let F be a proper family, then (F−trans)f = krF−trans. Consequently,
if rF = F , then (F−trans)f = kF−trans.

Proof. Obviously krF−trans ⊂ (rF−trans)f = (F−trans)f. Now we show (rF−
trans)f ⊂ krF− trans. Assume (X, f) is in (rF− trans)f, then it is weakly dis-
joint from every F−trans system. For every opene subsets U, V of X, and for ev-
ery F−transitive system (Y, g) and every opene subsets U ′, V ′ of Y , Nf (U, V ) ∩
Ng(U ′, V ′) 6= ∅. By the definition of rF we have Nf (U, V )∩A 6= ∅ for every A ∈ rF .
Hence Nf (U, V ) ∈ krF , i.e. (X, f) is krF−transitive. Thus

(rF−trans)f = (F−trans)f = krF−trans = rkrF−trans.

¤
Theorem 3.3. Let F be a proper family. Then

(1) ((F−trans)f)f = F−trans iff rF = rkrkrF .
(2) krF− trans and krkrF− trans are symmetrically dual, i.e. (krF− trans)f =

krkrF−trans and (krkrF−trans)f = krF−trans.
(3) Let F be a proper invariant thick family. Then ((F−trans)f)f = F−trans if and

only if F = rkrkF .

Proof. (1) By Lemma 3.2

(F−trans)f = krF−trans = rkrF−trans.

Hence
((F−trans)f)f = (krF−trans)f = rkrkrF−trans.

Thus ((F−trans)f)f = F−trans iff rF = rkrkrF .
(2) As (F−trans)f = krF−trans = rkrF−trans, the result follows from (3.3).
(3) By W-AG Lemma rF = F . Thus (3) follows from (1). ¤
For a proper invariant thick family F , if (F− trans)ff = F− trans, then it is

necessary that (F−trans)ff = F−trans ⊂ WM . If F is the family of thick sets,
then it is known that (F−trans)ff is strictly weaker than WM [HY]. Thus we further
restrict our attention to invariant filter. To do this we need
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Lemma 3.4. Let F be a proper invariant thick family with F ⊂ kF . Then
(1) (kF−trans)f = (F−trans)ff ⊂ WM .
(2) rkrkF = τkrkF .

Proof. (1) As F ⊂ kF and F is invariant thick, by W-AG theorem we have

(F−trans)ff = (kF−trans)f ⊂ (F−trans)f = kF−trans.

This means (F−trans)ff = (kF−trans)f ⊂ WM by Proposition 3.1(2).
(2) By (1) and Lemma 3.2 (kF−trans)f = krkF−trans ⊂ WM . By Theorem

2.2 we have (kF− trans)f = τkrkF− trans. As (kF− trans)f = rkrkF− trans,
rkrkF = τkrkF . ¤

Recall that for families F1 and F2, F1 · F2 = {F1 ∩ F2|F1 ∈ F1, F2 ∈ F2}. Thus
we have F1 ∪ F2 ⊂ F1 · F2. It is easy to check that

F1 · F2 ⊂ F ⇐⇒ F1 · kF ⊂ kF2. (3.6)

Hence if F is a filter then F = F · F ⊂ F · kF = kF .
Now for a proper invariant filter we get

Theorem 3.5. For a proper invariant filter F , ((F− trans)f)f = F− trans iff
τkrkF = F
Proof. For a filter F , F ⊂ kF . And since F is an invariant filter, it is invariant thick.
By Theorem 3.3 and Lemma 3.4, the result follows. ¤

In Section 4 we will give an invariant filter for which τkrkF 6= F .
Generally it is very difficult to compute rF for a family F . Now we give an

easier checking condition. To do this we need a lemma (Proposition 2.7 of [Ak]) and
Proposition 3.7.

Lemma 3.6. If F is a filter, then τF and τkτkτF are filters and τF ⊂ τkτkτF .
Moreover, τkτkτkτF = τkτF . If in addition F is invariant and consequently thick,
then τkτkF · τkF = τkF .

Now we show

Proposition 3.7. If F is an invariant proper family and satisfies F · τkF = F , then
(1) τkF = k(F · kF) is a filter.
(2) if in addition F is thick, then τkF−trans and F · kF−trans are symmetrically

dual.

Proof. (1) The proof is similar to the proof of Proposition 2.9 of [Ak]. First we
mention a fact: for any proper family F , k(F · kF) ⊂ F ∩ kF is a filter and is the
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largest family F ′ satisfying F ·F ′ ⊂ F (Proposition 2.1 [Ak]). Hence by F ·τkF = F ,
we have τkF ⊂ k(F · kF) ⊂ kF . As F is an invariant family, so is k(F · kF). Thus
k(F · kF) = τ(k(F · kF)) ⊂ τkF . The result follows.

(2) By (1) and W-AG Theorem we have (τkF−trans)f = kτkF−trans = k(k(F ·
kF))− trans = F · kF−trans immediately.

Now we show (F · kF−trans)f ⊂ τkF−trans. As F−trans ⊂ F · kF−trans and
kF−trans ⊂ F · kF−trans, we have

(F · kF−trans)f ⊂ (F−trans)f and (F · kF−trans)f ⊂ (kF−trans)f.

By W-AG Theorem (F−trans)f = kF−trans. So (F · kF−trans)f ⊂ kF−trans ∩
(kF−trans)f. Hence (F ·kF−trans)f ⊂ kF−trans∩WM = τkF−trans (by Theorem
2.2).

As τkF = k(F · kF), τkF−trans ⊂ (F · kF−trans)f. Thus (F · kF−trans)f =
τkF−trans. ¤

By Lemma 3.6 and Proposition 3.7 we have the following theorem immediately:

Theorem 3.8. Let F be a proper invariant filter. Then
(1) τkτkF−trans and τkF · kτkF−trans are symmetrically dual.
(2) F−trans ⊂ (kF−trans)f ⊂ τkτkF−trans. Consequently, if F = τkτkF , then

F−trans and kF−trans are symmetrically dual, i.e. a system is F−trans iff it
is weakly disjoint from any kF−trans system, and a system is kF−trans iff it is
weakly disjoint from any F−trans system.

(3) if F is an invariant filter with τkτkF = F , then τkτB ⊂ F . That is, τkτB is the
smallest filter with the property.

Proof. (1) Let F1 = τkF . Then

F1 · τkF1 = τkF · τkτkF = τkF = F1.

Applying Proposition 3.7-(1) we get the result.
(2) As F ⊂ τkτkF (Lemma 3.6), we have kF−trans = (F−trans)f ⊃ (τkτkF−

trans)f. Thus F− trans ⊂ (kF− trans)f ⊂ τkτkF− trans. If F = τkτkF , then
(kF−trans)f = F−trans and (F−trans)f = kF−trans.

(3) As kF ⊂ B, we have τkτB ⊂ τkτkF = F . ¤
Applying the above corollary to the case when F = kB or F = τkτB, we get the

following corollary which appeared in [HY].

Corollary 3.9. τkτB−trans and kτkτB−trans are symmetrically dual.

Generally for an invariant thick family F , τkF is not necessarily a filter. If it is
we have
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Proposition 3.10. If F is a proper invariant thick family, then τkτkτkF = τkF . If
in addition τkF is a filter, then (kτkF−trans)f = τkF−trans and (τkF−trans)f =
kτkF−trans.

Proof. As τkF ⊂ kF , we have kτkF ⊃ F and τkτkF ⊃ τF = F . Replacing F by
τkF , we get τkτkτkF ⊃ τkF . And by τkτkF ⊃ F , we have kτkτkF ⊂ kF and
hence τkτkτkF ⊂ τkF . Thus τkτkτkF = τkF .

If τkF is a filter, then by Theorem 3.8-(2) we have (kτkF−trans)f = τkF−trans
and (τkF−trans)f = kτkF−trans. ¤

There are some questions concerning Theorem 3.8. The first one is that if F is an
invariant filter, then whether it is true that (kF−trans)f = F−trans implies F =
τkτkF? The second one is: does Theorem 3.8 really give some other symetetriclly
dual properties which is not the one in Corollary 3.9?

Now we show the answer to the first question is negative, and in Section 4 we will
show that the answer to the second question is positive.

Theorem 3.11. There exists an invariant filter G such that ((G−trans)f)f = G−trans
but G 6= τkτkG.

Proof. Let F = kB. Then G = rkrkrF = rkrB is an invariant family with ((G−
trans)f)f = G−trans by Theorem 3.3. Now we show G is a filter. For any A,B ∈ G, by
definition there are krB−transitive systems (X, f), (Y, g) and opene subsets U, V ⊂ X
and U ′, V ′ ⊂ Y such that Nf (U, V ) ⊂ A and Ng(U ′, V ′) ⊂ B. For any transitive
system (Z, h), as (X, f) is weakly disjoint from (Z, h) we have (Z × X, h × f) is
transitive. And because (Y, g) also is krB−transitive, we have (Z ×X × Y, h× f × g)
is transitive. Hence (X × Y, f × g) is weakly disjoint from any transitive system,
i.e. (X × Y, f × g) is krB-transitive. Thus Nf (U, V ) ∩ Ng(U ′, V ′) ∈ rkrB = G. So
A ∩B ∈ G for any A,B ∈ G, i.e. G is a filter.

Now we show τkG = τB, which implies G 6= τkτkG. As τkG−trans = WM ∩ kG−
trans and kG−trans = rB−trans = B−trans = transitivity, we have τkG−trans =
WM . Hence by W-AG Lemma τkG = rτkG = τB. ¤

By the proof of Theorem 3.11 we have

Corollary 3.12. A system (X, f) is transitive if and only if it is weakly disjoint
from every strongly mixing system and a system which is weakly disjoint from every
transitive system need not be strongly mixing.

In the measure theoretical setting, a system is ergodic iff its product with any WM
is ergodic, and a system is WM iff its product with any WM system is WM. The facts
are not valid in topological setting. In [HY] the authors show that for a dynamical
system (Y, S), (Y, S) ×WM ⊂ WM iff (Y, S) is WM ∩ TE, (Y, S) × TE ⊂ TE iff
(Y, S) is WM ∩ TE, (Y, S)×WM ∩ TE ⊂ WM ∩ TE iff (Y, S) is WM ∩ TE.
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Motivated by the facts call a family F standard if (1) a system is F−trans iff its
product with any F−trans system is F−trans, (2) a system is F−trans iff its product
with any τkF−trans system is τkF−trans and (3) a system is F−trans iff its product
with any kτkF−trans system is kτkF−trans.

Theorem 3.13. Let F be a proper invariant thick family. Then F is standard iff F
is a filter with F = τkτkF .

Proof. Assume F is a standard family. As F be an invariant thick family, using
(1) and W-AG Lemma we know that F is a filter. By Lemma 3.6 we know that
τkτkF · τkF = τkF . Using (2) and W-AG Lemma we get that F ⊃ τkτkF . It
follows that τkτkF = F by Lemma 3.6.

Now suppose that F is a filter with F = τkτkF . (1) is obvious. We show (2)
now. First if (X1, T1) is F− trans and (X2, T2) is τkF− trans respectively then
(X1 ×X2, T1 × T2) is τkF−trans as F · τkF = τkτkF · τkF = τkF . If the product
of (X1, T1) with any τkF−trans system is τkF−trans then (X1, T1) is τkF−trans
and kτkF−trans by W-AG theorem. By Theorem 2.2 (3) we know that (X1, T1) is
τkτkF−trans, i.e. F−trans.

Let (X1, T1) and (X2, T2) be F− trans and kτkF− trans respectively. To show
(X1 ×X2, T1 × T2) is kτkF−trans we need to show its product with any τkF−trans
system (X3, T3) is transitive. Note that kτkF · τkF = kF [Ak, Proposition 2.9].
Thus, (X2 ×X3, T2 × T3) is kF−trans. It follows that (X1 ×X2 ×X3, T1 × T2 × T3)
is transitive.

To finish (3) we need to show that if the product of (X1, T1) with any kτkF−trans
system is kτkF− trans, then it is F− trans. First (X1, T1) is kτkF− trans. Thus
(X1 × X1, T1 × T1) is kτkF−trans, and consequently weakly mixing. By Theorem
2.2 (X1, T1) is τkτkF−trans = F−trans. ¤

§4 examples

In this section we will give an example with τkrkF− trans = (kF− trans)f 6=
F , where F is an invariant filter and an example to show that Theorem 3.8 really
gives some other symmetriclly dual properties which is not the one in Corollary 3.9.
The main idea of the first example is to find a translation invariant thick family F ′
with F ′ − trans ⊂ (kF− trans)f but F ( F ′, and then by Theorem 3.8 we have
(kF−trans)f 6= F−trans. Now we start to show the example.

Let D = {A ⊂ Z+|d(A) = 1}. We will prove (kD−trans)f 6= D−trans. It is easy to
see D is an invariant filter and kD = {A ⊂ Z+|d̄(A) > 0}. Set Nk(A) = {i ∈ Z+|ik ∈
A}, where A is a subset of Z+.

Lemma 4.1. A ∈ D if and only if Nk(A) ∈ D for every k ∈ N.
14



Proof. Since N1(A) = A, sufficiency is obvious. Now assume A ∈ D and there exists
some k0 such that Nk0(A) /∈ D, i.e. there are {ni}∞i=1 such that

lim
i→∞

|{0, 1, · · · , ni − 1} ∩Nk0(A)|
ni

= a < 1.

Then

lim sup
i→∞

|{0, 1, · · · , k0ni − 1} ∩A|
k0ni

≤ lim sup
i→∞

ni(k0 − 1) + |{0, 1, · · · , ni − 1} ∩Nk0(A)|
k0ni

=
k0 − 1

k0
+ lim

i→∞
|{0, 1, · · · , ni − 1} ∩Nk0(A)|

k0ni

=
k0 − 1

k0
+

a

k 0
< 1,

a contradiction as A ∈ D. ¤
Lemma 4.2. Set F = {A ⊂ Z+|N2k(A) ∈ kD for every k ∈ Z+}. Then a transitive
system (X, f) is kD−transitive if and only if (X, f) is F−transitive.

Proof. As F ⊂ kD, it remains to show if (X, f) is kD−transitive then it is F−trans.
Since a transitive system is F−transitive if and only if it is F−central, i.e. N(U,U) ∈
F for each opene set, the result follows from the following claim.
Claim: If (X, f) is kD−central, then for every opene set U and every k ∈ N,

N2k(U) = N2k(Nf (U,U)) = {i|2ki ∈ Nf (U,U)} ∈ kD.

Proof of the claim: We proceed by induction on k. Firstly let k = 1, then N2(U) =
2Z+∩Nf (U,U)

2 .
Case 1. If Nf (U,U) ⊂ 2Z+, then d̄(N2(U)) = d̄(Nf (U,U)

2 ) ≥ d̄(Nf (U,U)). So
N2(U) ∈ kD.

Case 2. If there is an odd number a ∈ Nf (U,U), then let V = U ∩ f−a(U) 6= ∅.
As (X, f) is kD−central, Nf (V, V ) ∈ kD. It is easy to check for every n ∈ Nf (V, V )
we have n, n + a ∈ Nf (U,U) and since a is odd either n or n + a is even. Hence
the even number in Nf (U,U) appears with positive upper density. Consequently
d̄(N2(U)) > 0, i.e. N2(U) ∈ kD.

Assume the claim has been established for k, i.e. N2k(U) ∈ kD for every opene set
U of X. If N2k(U) ⊂ 2Z+, then N2k+1(U) = N2k (U)

2 ∈ kD. If there is an odd number
a ∈ N2k(U), then similar to above we have N2k+1(U) ∈ kD. ¤
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Theorem 4.3. Let

F ′ = {A ⊂ Z+ : for any r ∈ Z, there is kr ∈ Z+ with {i|2kr i− r ∈ A} ∈ D}
= {A ⊂ Z+ : for any r ∈ Z, there is kr ∈ Z+ with N2kr (A + r) ∈ D},

where A + r = {n ∈ Z+ : n− r ∈ A}. Then
(1) F ′ is an invariant filter and D $ F ′.
(2) F ′ − trans ⊂ (kD−trans)f, consequently D−trans $ (kD−trans)f.

Proof. (1) First we show F ′ is a filter. For any two elements A,B of F ′, by definition
for every r ∈ Z there are kr, k

′
r ∈ Z+ such that N2kr (A + r) ∈ D and N

2k′r (B + r) ∈
D. By Lemma 4.1 we have N

2kr+k′r (A + r) ∈ D and N
2kr+k′r (B + r) ∈ D. Thus

N
2kr+k′r ((A∩B)+r) = N

2kr+k′r ((A+r)∩(B+r)) = N
2kr+k′r (A+r)∩N

2kr+k′r (B+r) ∈ D.
So A ∩B ∈ F ′.

Now we show F ′ is invariant, i.e. gt(F ′) = F ′ for every t ∈ Z. For any A ∈ F ′,
by definition for any r ∈ Z there exists kr such that {i|2kr i− r ∈ A} ∈ D and hence
{i|2kr i− r + t ∈ A + t} ∈ D. As r − t runs over Z when r runs over Z, by definition
A + t ∈ F ′. Thus gt(F ′) = F ′.

Thus F ′ is an invariant filter. By Lemma 4.1, D ⊂ F ′. Now we show D 6= F ′. An
element A ∈ F ′ \ D can be constructed in the following way.

Let A =
∞⋃

r=−∞
(2krZ+ − r), where kr will be fixed later. As d(2krZ+ − r) =

d(2krZ+) =
1

2kr
, we have d̄(A) ≤

∞∑
r=−∞

d(2krZ+ − r) =
∞∑

r=−∞

1
2kr

. Choose {kr} with

∞∑
r=−∞

1
2kr

< 1 (for example, let k0 = 1 and kr = k−r = 3r, r > 1, then
∞∑

r=−∞

1
2kr

=

1
2

+ 2×
∞∑

r=1

1
23r

=
11
14

< 1). Thus A ∈ F ′ \ D.

(2) Now we show every F ′-transitive system (X, f) is weakly disjoint from any kD-
transitive system. We only need to check the case when (X, f) is a homeomorphism
(for the general case we pass to the natural extension). Let (Y, g) be a kD−transitive
system.

Let U1, U2 be opene sets of Y and V1, V2 be opene sets of X. Let n0 ∈ Ng(U1, U2)
and U = U1 ∩ g−n0(U2). And let V be an opene subset of V1 and r ∈ N with
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f−r(V ) ⊂ f−n0(V2). Then we have

Ng×f (U1 × V1, U2 × V2) = Ng(U1, U2) ∩Nf (V1, V2)

⊃ n0 + Ng(U,U) ∩Nf (V1, f
−n0(V2))

⊃ n0 + Ng(U,U) ∩Nf (V, f−r(V ))

= n0 + Ng(U,U) ∩ (Nf (V, V )− r)

As Nf (V, V ) ∈ F ′, there is k−r ∈ N with N2k−r (Nf (V, V ) − r) ∈ D. By Lemma 4.1
N2k−r (Ng(U,U)) ∈ kD. Hence

N2k−r (Ng(U,U) ∩ (Nf (V, V )− r)) = N2k−r (Ng(U,U)) ∩N2k−r (Nf (V, V )− r) 6= ∅.

Particularly Ng(U,U) ∩ (Nf (V, V ) − r) 6= ∅. So Ng×f (U1 × V1, U2 × V2) 6= ∅, i.e.
(X, f) f (Y, g). Thus we have proved F ′-trans ⊂ (kD)f.

By WAG Lemma there exists (X, f) which is F ′−transitive but not D−transitive.
So D−trans $ (kD−trans)f. ¤
Remark 4.4. The same method can be applied to kB and BD∗ = {A|d∗(A) = 1}.

Finally we give the second example.

Theorem 4.5. τkτkD is not the family consisting of thickly syndetic sets, i.e.
τkτkD 6= τkτB.

Proof. Since kD ⊂ B, τkτB ⊂ τkτkD. By Lemma 3.6, D ⊂ τkτkD and it is impos-
sible that τkτkD = τkτB as D " τkτB. ¤
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