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Abstract. Let (X, f) be a dynamical system. In general the set of all
ω-limit sets of f is not closed in hyperspace. In this paper we study the
case when X is a graph, and show that the family of ω-limit sets of a
graph map is closed with respect to the Hausdorff metric.

1. Introduction

A dynamical system is a pair (X, f), where X is a compact metric space

with a metric d and f is a continuous map from X to itself. For x ∈ X,

{x, f(x), f 2(x), . . .} is called the orbit of x and denoted by O(x, f). x is a

periodic point if fn(x) = x for some n ∈ N, and n is called the period of

x. If n = 1, then x is also called a fixed point of f . A system is transitive

if there exists some dense orbit. Denote the set of all limit points of an

orbit O(x) by ω(x, f) and call it the ω-limit set of f . For any x ∈ X,

ω(x, f) is closed nonempty subset of X and it is strongly invariant (i.e.

f(ω(x, f)) = ω(x, f)). Write X(f, ω) = {ω(x, f) : x ∈ X}.
Omega limit sets give fundamental information about asymptotic behav-

ior of a dynamical system. One of the basic tasks is to give a topological

characterization of them. This task is very complicated even in the simplest

one-dimensional case—the compact interval ([1], [2], [3], [4], [6]). Let I be

a closed interval in R and let f : I → I be a continuous map. Then for any

x ∈ I, ω(x, f) is (i) a periodic orbit, or (ii) an infinite compact nowhere

dense set, or (iii) a finite union of connected subintervals which forms a

periodic orbit ([3], [6]). Conversely, whenever A ⊆ I is of one of the above

forms then there is a continuous map f : I → I such that A is an ω-limit

set of f . This result is generalized to a graph map in [7]. Another related

problem is, for a given f and a closed strongly f -invariant set A, to find a

condition in order to verify whether A is an ω-set of f or not. One can find

these kinds of characterizations of ω-sets in [4] and [2].

Let I be a closed interval in R and let f : I → I be a continuous map.

The map ω : I 7→ ω(x, f) was studied in [5] and it was shown that this
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map is far from continuous. Hence it is somewhat surprising that the image

of this map endowed with the Hausdorff metric is closed. This was proved

in [4] and the proof of this result is rather long but quite elementary and

ingenious. In a similar way, this result was extended to circle maps in [9]. In

this paper we show that the family of ω-limit sets of a graph map is closed

with respect to the Hausdorff metric. The proof we offer is different from

[4], [9] and simpler. Also in the proof we give a characterization of ω-limit

sets of a graph map.

2. Preliminary

In the article, integers, nonnegative integers, natural numbers, real num-

bers and the complex numbers are denoted by Z, Z+, N, R and C respec-

tively.

Let (X, d) be a compact metric space. The hyperspace X is the set of all

nonempty closed subsets of X. The Hausdoff metric dH on X is defined as

follows:

dH(V, W ) = max{d(v, W ), d(w, V ) : v ∈ V, w ∈ W}, ∀ V, W ∈ X,

where d(x, Y ) = inf{d(x, y) : y ∈ Y } for x ∈ X and Y ⊆ X. It is well

known that (X, dH) is a compact metric space (see [8], for example).

Let (X, f) be a dynamical system. Recall that a subset A ⊆ X is f -

invariant if f(A) ⊆ A, and strongly f -invariant if f(A) = A. Let X1(f)

(X2(f)) be the set of all nonempty (strongly) f -invariant closed subsets.

Obviously one has that X(f, ω) ⊆ X2(f) ⊆ X1(f). And it is easy to verify

the following proposition.

Proposition 2.1. X1(f) and X2(f) are closed subspaces of (X, dH). Espe-

cially, both are compact.

But generally the space X(f, ω) need not be closed in X.

Example 2.2. Let D = {reiθ ∈ C : 0 ≤ r ≤ 1, θ ∈ R} be the unit disc and

f : D → D, reiθ 7→ rei(θ+r). Then (D, f) is a dynamical system. It is easy

to verify D(f, ω) is not closed in D.

In the next section it will be shown that when X is a graph, X(f, ω) is

closed. Now recall some definitions about a graph. By a graph one means a

connected compact one-dimensional polyhedron in R3. A continuous map

from a graph to itself is called a graph map. An arc is any space which is

homeomorphic to the closed interval [0, 1]. Then a graph G is a continuum

(i.e. a nonempty, compact, connected metric space) which can be written

as the union of finitely many arcs and any two of which are either disjoint
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or intersect only in one or both of their endpoints. Each of these arcs is

called an edge of G, and its end is called a vertex. Since G is a polyhedron

in R3, there are at least three edges in any circle of G. For a given graph

G, a subgraph of G is a subset of G which is a graph itself. The valence of a

vertex x is the number of edges that are incident on x, and if the number is

n then one writes val(x) = n. A vertex of valence 1 is also called an end of

G, and a vertex x with val(x) ≥ 3 is said a branching point of G. The set

of branching points of G is denoted by Br(G). A tree is a graph without

any subset which is homeomorphic to the unit circle. A star is either a tree

having only one branching point or an arc.

For convenience, we assume that the length of every edge of G is greater

than 1. Hence any non-degenerate connected closed subset of G with diam-

eter less than 1 is a star. Let x, y ∈ G. The arc with ends {x, y} is denoted

by [x, y] or [y, x]. Write (a, b) = [a, b]\{a, b}, and similarly one defines [a, b)

and (a, b]. [x; y] is also used to denote an arc with ends {x, y}, but in this

case one means this arc starts from the point x and ends with y.

For a topological space X, the closure of a subset A ⊆ X is denoted

by A. When (X, d) is a metric space, one writes B(x, ε) for the ε-ball

{x′ ∈ X : d(x, x′) < ε} and B(Y, ε) = {x ∈ X : d(x, Y ) < ε}, where x ∈ X,

Y ⊆ X and ε > 0.

3. Spaces of ω-limit sets of graph maps

The following theorem is the main result of this paper.

Theorem 3.1. Let G be a graph and let f : G → G be a continuous map.

Then the set of all ω-limit sets endowed with Hausdoff metric is compact.

Before proving the theorem, one needs some notations and lemmas. Re-

call that G is the hyperspace of G and G(f, ω) is the set of ω-limit sets of

G. Let v1, v2, . . . be an infinite sequence in G. For any n ∈ N write

Vn = O(vn, f), V =
∞⋃

n=1

Vn, Xn = ω(vn, f) and X =
∞⋃

n=1

Xn.

Assume that the sequence {Xn}∞n=1 converges to W in (G, dH). To prove

G(f, ω) is closed, it only needs to show W ∈ G(f, ω).

Now let’s sketch the idea of the proof. Firstly we reduce the system to the

case satisfying Condition I-III. The main reason is to exclude the easier case

when (W, f |W ) is transitive. Then we study the system under Condition I-

III. Lemma 3.5 gives a condition under which W belongs to G(f, ω). The

rest part is to show that the condition of this lemma can be satisfied.

If there are infinitely many elements of {Xn}∞n=1 which are equal, then it

is easy to see W ∈ G(f, ω). So we assume:
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Condition I : For any n,m ∈ N with n 6= m, Xn 6= Xm and dH(Xn,W ) <

2−n−1.

Observe that if Vn ∩ Vm 6= ∅ then Xn = Xm for n,m ∈ N. So in addition

one can assume the following condition holds:

Condition II : For any n,m ∈ N with n 6= m one has Vn ∩ Vm = ∅ and

dH(Vn, Xn) < 2−n−1, dH(Vn,W ) < 2−n.

Lemma 3.2. Assume that conditions I,II hold. If for any ε > 0 and N ∈ N,

there exist n ≥ N, y ∈ Vn and w ∈ W such that

sup{d(f i(y), f i(w)) : i ∈ Z+} ≤ ε,

then (W, f |W ) is transitive and hence W ∈ G(f, ω).

Proof. Let δ0 = 1/8. By the assumption, there are n1 ≥ 1, y1 ∈ Vn1 and

w1 ∈ W such that dH(Vn1 , Xn1) < δ0, dH(Xn1 ,W ) < δ0 and

sup{d(f i(y1), f
i(w1)) : i ∈ Z+} ≤ δ0.

Choose k1 ∈ N such that dH(Ok1(y1, f), O(y1, f)) < δ0, where Ok(x, f) =

{f j(x) : 0 ≤ j ≤ k} for x ∈ G and k ∈ N. There is some δ1 ∈ (0, δ0/8] such

that for any x ∈ B(w1, 3δ1), one has

sup{d(f i(x), f i(w1)) : i = 0, 1, . . . , k1} < δ0.

Then for any x ∈ B(w1, 3δ1), one has

(3.1)

dH(Ok1(x, f),W ) < δ0 + dH(Ok1(w1, f),W )
≤ 2δ0 + dH(Ok1(y1, f),W )

< 3δ0 + dH(O(y1, f),W )

≤ 3δ0 + dH(O(y1, f), Xn1) + dH(Xn1 ,W )
≤ 3δ0 + dH(Vn1 , Xn1) + dH(Xn1 ,W )
< 5δ0.

By assumption, there are n2 > n1, y′2 ∈ Vn2 and w′
2 ∈ W such that

dH(Vn2 , Xn2) < δ1, dH(Xn2 ,W ) < δ1 and

sup{d(f i(y′2), f
i(w′

2)) : i ∈ Z+} ≤ δ1.

Take x2 ∈ Xn2 such that d(w1, x2) = d(w1, Xn2) ≤ dH(W,Xn2) < δ1 and

take j2 ∈ Z+ such that d(f j2(y′2), x2) < δ1 − dH(W,Xn2). Then f j2(y′2) ∈
B(w1, δ1) and f j2(w′

2) ∈ B(w1, 2δ1). Let y2 = f j2(y′2) and w2 = f j2(w′
2).

Choose k2 > k1 such that dH(Ok2(y2, f), O(y2, f)) < δ1. There is δ2 ∈
(0, δ1/8] such that for any x ∈ B(w2, 3δ2), one has

sup{d(f i(x), f i(w2)) : i = 0, 1, . . . , k2} < δ1.

Then for any x ∈ B(w2, 3δ2), similar to (3.1) one gets dH(Ok2(x, f),W ) <

5δ1.
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Inductively, we have points w1, w2, . . . in W , positive integers k1 < k2 <

k3 < . . . and positive numbers δ0 = 1/8 > δ1 > δ2 . . . such that for any

n ∈ N, δn ≤ δn−1/8, wn+1 ∈ B(wn, 2δn) and

dH(Okn(x, f),W ) < 5δn−1, ∀x ∈ B(wn, 3δn).

Hence it is easy to see that the sequence {wn} converges to some point

w ∈ W and for any n ∈ N, w ∈ B(wn, 3δn) and

B(O(w, f), 5δn−1) ⊇ B(Okn(w, f), 5δn−1) ⊇ W.

Thus O(w, f) is dense in W and f |W is transitive. The proof of the lemma

is completed. ¤

Note that Lemma 3.2 holds for any compact space, not only for graph

maps. By Lemma 3.2, to show W ∈ G(f, ω) one only need consider the case

when (W, f |W ) is not transitive. Hence by Lemma 3.2, one can assume:

Condition III : There exists ε0 ∈ (0, 1/2] such that for any y ∈ V and

w ∈ W , one has

sup{d(f i(y), f i(w)) : i ∈ Z+} > ε0.

Obviously, if Condition III holds, then V ∩W = ∅.
In the sequel we always assume that Condition I-III hold. Fix ε0 defined

in Condition III and ε ∈ (0, ε0/2] such that f(B(x, ε)) ⊆ B(f(x), ε0) for all

x ∈ G. Let Y(ε) be the set of all non-degenerate connected closed subsets of

G contained in B(W, ε) and with diameter less than ε. By our assumption

of G any element of Y(ε) is a star.

Definition 3.3. Let Y, Y ′ ∈ Y(ε). If there exists a finite set {Y0, Y1, . . . , Yn}
⊆ Y(ε), n ∈ N such that Y = Y0, Y ′ = Yn and f(Yi−1) ⊇ Yi for any

i = 1, 2, . . . , n, then one denotes it by Y
(f,ε)−→ Y ′.

It is easy to verify the following lemma

Lemma 3.4. (1) ′′ (f,ε)−→ ′′ is a transitive relation on the set Y(ε).

(2) If Y
(f,ε)−→ Y ′, then there exist a connected closed subset Z and n ∈ N

such that fn(Z) = Y ′ and
⋃n

i=0 f i(Z) ⊆ B(W, ε).

The following lemma offers a condition under which a set can belong to

G(f, ω).

Lemma 3.5. Let ε0/2 ≥ δ1 ≥ δ2 ≥ δ3 ≥ . . . be a sequence of positive

numbers with limi→∞ δi = 0 and let {Yi}∞i=1 be a sequence of non-degenerate

connected closed subsets of G. If for any i ∈ N, Yi ∈ Y(δi), Yi
(f,δi)−→ Yi+1 and

W ⊆ B(
⋃∞

j=i Yj, δi), then W ∈ G(f, ω).
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Proof. For any i ∈ N, by Lemma 3.4-(2) there exist a connected closed

subsets Zi of Yi and ni ∈ N such that

fni(Zi) = Yi+1 and

ni⋃

k=0

fk(Zi) ⊆ B(W, δi).

Let mi = n1 + n2 + . . . + ni (m0 = 0), then
⋂∞

i=1 f−mi−1(Zi) 6= ∅ and let x ∈⋂∞
i=1 f−mi−1(Zi). Since O(fmi(x), f) ⊆ B(W, δi+1), one has ω(x, f) ⊆ W .

On the other hand, since
⋃∞

j=i+1 Yj ⊆ B(O(fmi(x), f), δi+1), on has

W ⊆ B(
∞⋃

j=i+1

Yj, δi+1) ⊆ B(O(fmi(x), f), 2δi+1).

Hence W ⊆ ω(x, f). Thus we have W = ω(x, f) ∈ G(f, ω). ¤

Definition 3.6. Let Y ∈ Y(ε). If {i ∈ N : Y ∩ Vi 6= ∅} is infinite, then

Y is called a (P, ε)-star. Let A = [w; y] ∈ Y(ε) be an arc with w ∈ W

and y ∈ V . If for any x ∈ (w, y] and n ∈ N there is some i ≥ n such that

Vi ∩ (w, x] 6= ∅, then A is called a (P, ε)-arc.

Denote the set of all (P, ε)-star and the set of all (P, ε)-arc by Y(P, ε)

and A(P, ε) respectively.

By the definition one gets the following lemma readily.

Lemma 3.7. (1) A(P, ε) ⊆ Y(P, ε).

(2) For any w ∈ W , there exists a point y ∈ B(w, ε) ∩ V such that [w; y]

is a (P, ε)-arc.

(3) For any Y ∈ Y(P, ε) and ε′ ∈ (0, ε], there exists a (P, ε′)-arc A with

A ⊆ Y .

Let Y ∈ Y(P, ε), set

(3.2)
Y(ε, Y ) = { Y ′ ∈ Y(ε) : Y

(f,ε)−→ Y ′ and there exists

Y ′′ ∈ Y(P, ε) such that Y ′ = Y ′′ or Y ′ (f,ε)−→ Y ′′}.
Lemma 3.8. (1) For any Y ∈ Y(P, ε), Y(ε, Y ) 6= ∅.

(2) If Y, Y ′ ∈ Y(P, ε) and Y
(f,ε)−→ Y ′, then Y(ε, Y ′) ⊆ Y(ε, Y ).

(3) If Y ′ ∈ Y(P, ε) and Y ∈ Y(ε, Y ′) with diamf(Y ) < ε, then f(Y ) ∈
Y(ε, Y ′).

Proof. (1) and (2) are easy to be verified. We now prove (3). Since

diamf(Y ) < ε, one has Y ′ (f,ε)−→ Y
(f,ε)−→ f(Y ). If f(Y ) is a (P, ε)-star,

then by the definition f(Y ) ∈ Y(ε, Y ′). Now assume that f(Y ) is not a

(P, ε)-star. By the definition of Y(ε, Y ′), there is some (P, ε)-star Y ′′ such

that Y ′ (f,ε)−→ Y
(f,ε)−→ Y ′′. Since f(Y ) is not a (P, ε)-star, f(Y ) 6= Y ′′. Hence

by the definition of Y
(f,ε)−→ Y ′′ it is easy to see that f(Y )

(f,ε)−→ Y ′′. Hence

f(Y ) ∈ Y(ε, Y ′). ¤
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Lemma 3.9. Let A = [w; y] be a (P, ε)-arc and w a periodic point. Then

there exist x ∈ (w, y) and a (P, ε)-star Y such that [x, y]
(f,ε)−→ Y .

Proof. Let m be the period of w and val(w) = k. Take positive numbers

δ−1 > δ0 > δ1 > . . . > δ2k such that δ−1 < min{d(w, y), ε0}, (B(w, δ−1) \
{w}) ∩Br(G) = ∅ and for any i = 0, 1, 2, . . . , 2k, j = 1, 2, . . . , m, one has

(3.3) f j(B(w, δi)) ⊆ B(f j(w), δi−1).

Let δ = min{δ2k, δi−1 − δi : i = 0, 1, . . . , 2k}/2. By Condition II and the

definition of (P, ε)-arc, there is some N ∈ N such that

(3.4) dH(VN ,W ) < δ and A ∩ VN ∩B(w, δ) 6= ∅.
Take any point z ∈ A∩VN ∩B(w, δ). By Condition III and (3.3), there are

positive integers n0 < n1 < n2 < . . . < n2k such that for any i = 0, 1, . . . , 2k,

one has fmni(z) ∈ B(w, δ2k−i−1)\B(w, δ2k−i) and {fmj(z) : j = 0, 1, . . . , ni−
1} ⊆ B(w, δ2k−i). Hence there are integers 0 ≤ p < q < r ≤ 2k such

that fmnp(z), fmnq(z) and fmnr(z) are in the same connected component of

B(w, δ−1) \ {w}. Take x ∈ (w, y) such that

{fmj(x) : j = 0, 1, 2 . . . , nr} ⊆ B(w, δ).

Let Y = [fmnr(x), fmnr(z)], then [x, y] ⊇ [x, z]
(f,ε)−→ Y . By (3.4), there is

some w′ ∈ W such that w′ ∈ B(fmnq(z), δ) ⊆ [w, fmnr(z)) \ B(w, δ) ⊆ Y .

By Lemma 3.7-(2), B(fmnp(z), δ) is a (P, ε)-star and hence Y is also a

(P, ε)-star. ¤

Corollary 3.10. Let A = [w; y] be a (P, ε)-arc. If there is some n ∈ N such

that fn(w) is a periodic point, then there exist x ∈ (w, y) and a (P, ε)-star

Y such that [x, y]
(f,ε)−→ Y .

Proof. It is obvious that there exists z ∈ (w, y]∩V such that [fn(w); fn(z)]

is a (P, ε)-arc and diamf i([w, z]) < ε for any i = 1, 2, . . . , n. According to

Lemma 3.9, there exist x′ ∈ (fn(w), fn(z)) and a (P, ε)-star Y such that

[x′, fn(z)]
(f,ε)−→ Y . Let x ∈ f−n(x′) ∩ (w, z), then one has

[x, y] ⊇ [x, z]
(f,ε)−→ [x′, fn(z)]

(f,ε)−→ Y.

¤

Lemma 3.11. Let A = [w; y] be a (P, ε)-arc. Then there exist x ∈ (w, y)

and a (P, ε)-star Y such that [x, y]
(f,ε)−→ Y .

Proof. According to Corollary 3.10, it suffices to consider the case when

O(w, f) is infinite. By the definition of (P, ε)-arc, there are positive integers

k1 < k2 < . . . and points {x1, x2, x3, . . .} ⊆ (w, y] such that xi ∈ Vki
and
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d(xi+1, w) < d(xi, w)/2 for all i ∈ N. By Condition III for every i ∈ N there

is a unique ni ∈ N such that ε/2 ≤ d(fni(xi), f
ni(w)) < ε0 and

d(fn(xi), f
n(w)) < ε/2, ∀n = 0, 1, . . . , ni − 1.

Obviously, one has limi→∞ ni = ∞. Without loss of generality, one can

assume n1 < n2 < n3 < . . .. Let wi = fni(w), then the elements in {wi}∞i=1

are mutually distinct. Passing to a subsequence if necessary one can assume

that limi→∞ wi = w′ and for any i ∈ N, one has

d(wi+1, w
′) < d(wi, w

′)/2 and wi ∈ [w1, w
′).

Dropping the first finitely many points if necessary one can assume in ad-

dition that

d(w1, w
′) < ε/4 and [w1, w

′) ∩Br(G) = ∅.
Take δ > 0 such that δ < d(x4, w) and for any n = 0, 1, . . . , n4,

fn(B(w, δ)) ⊆ B(fn(w), d(w5, w4)/2).

Then for any x ∈ B(w, δ) ∩ (w, y], one has fn4(x) ∈ (w5, w3). Since

d(fn4(x4), f
n4(w)) = d(fn4(x4), w4) > ε/2 and d(w1, w

′) < ε/4, we have

[x, y] ⊇ [x, x4]
(f,ε)−→ [w′, w5] or [x, y] ⊇ [x, x4]

(f,ε)−→ [w3, w1].

As w6 ∈ W ∩ (w′, w5) and w2 ∈ W ∩ (w3, w1), by Lemma 3.7-(2) [w′, w5]

and [w3, w1] both are (P, ε)-arcs. Thus [x, y]
(f,ε)−→ Y holds for Y = [w′, w5]

or Y = [w3, w1]. This completes the proof of the lemma. ¤

Let Y ∈ Y(P, ε), and write

(3.5) U(P, ε, Y ) =
⋃
{Y ′ : Y ′ ∈ Y(ε, Y )}.

Lemma 3.12. Let A = [w; y] be a (P, ε)-arc. Then W ⊆ U(P, ε, A).

Proof. Choose ε1 ∈ (0, ε/2] such that f(B(x, ε1)) ⊆ B(f(x), ε/2) for all

x ∈ G. Take any point v ∈ V ∩B(w, ε1)∩A, then [w; v] and f([w; v]) are also

(P, ε)-arcs and f([w; v]) ∈ Y(ε, A). Suppose that Lemma 3.12 does not hold,

then there are w1 ∈ W and δ ∈ (0, ε1] such that B(w1, δ) ∩ U(P, ε, A) = ∅.
For a subset Z of G define N(Z ∩ V ) = {i ∈ N : Vi ∩ Z 6= ∅} and

N1(Z ∩ X) = {i ∈ N : Xi ∩ X 6= ∅}. Since dH(Xi,W ) → 0 as i → ∞,

N1(B(w1, δ) ∩X) is cofinite. Hence M = N([w; v] ∩ V ) ∩N1(B(w1, δ) ∩X)

is an infinite subset of N. For any i ∈M, one chooses a point xi ∈ Vi∩ [w, v].

Since f(xi) ∈ f([w; v]) ⊆ U(P, ε, A) and O(xi, f)∩B(w1, δ) 6= ∅, there exists

yi ∈ O(f(xi), f) ∩ U(P, ε, A) such that f(yi) 6∈ U(P, ε, A).

As yi ∈ U(P, ε, A), there is some Yi ∈ Y(ε, A) such that yi ∈ Yi. By

Lemma 3.8-(3), diamYi ≥ ε1. Let i1 < i2 < . . . be a sequence in M
such that limj→∞ yij = y′, d(yi1 , y

′) < ε1, [yi1 , y
′) ∩ Br(G) = ∅, yik ∈

[yi1 , y
′) and d(yik+1

, y′) < d(yik , y
′)/2,∀k ∈ N.
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It is obvious that y′ ∈ W . If there exists some k ∈ N such that y′ ∈
Yik , then [yik , y

′] is a (P, ε1)-arc contained in Yik and hence f([yik , y
′]) is a

(P, ε)-star. Thus we have f([yik , y
′]) ∈ Y(ε, A) and f(yik) ∈ f([yik , y

′]) ⊆
U(P, ε, A). This contradicts the definition of {yi}. So for any k ≥ 2, one

has y′ 6∈ Yik . This implies that [yi1 , yik ] ⊆ Yik . By Lemma 3.11, there are

x ∈ (y′, yi1), a sufficiently big k and a (P, ε)-star Y ′ such that

[yik , yi1 ] ⊇ [x, yi1 ]
(f,ε)−→ Y ′.

Hence [yik , yi1 ] ∈ Y(ε, A). By Lemma 3.8-(3), one has f([yik , yi1 ]) ∈ Y(ε, A)

and f(yik) ∈ f([yik , yi1 ]) ⊆ U(P, ε, A). This also contradicts the definition

of {yi}. Thus the proof is completed. ¤

Now it is time to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. As discussed at the beginning of this section, one can

assume Condition I-III hold. Choose positive numbers δ1 ≥ δ2 ≥ . . . such

that δ1 < ε0/2, f(B(x, δ1)) ⊆ B(f(x), ε0) and limn→∞ δn = 0. And choose

points w1, w2, . . . in W such that for any n ∈ N one has {wn, wn+1, . . .} = W .

For any n ∈ N, by Lemma 3.12 and Lemma 3.7-(3), there are (P, δn)-arc

An, Yn ∈ Y(δn) and a (P, δn)-star Y ′
n such that

An
(f,δn)−→ Yn

(f,δn)−→ Y ′
n ⊇ An+1 and d(wn, Yn) < δn/2.

It is easy to check Y1, Y2, . . . satisfy the condition of Lemma 3.5. Hence by

Lemma 3.5, W is an ω-limit set. So the proof is completed. ¤
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