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Abstract. By proving the minimality of face transformations acting on the di-
agonal points and searching the points allowed in the minimal sets, it is shown

that the regionally proximal relation of order d, RP
[d], is an equivalence relation

for minimal systems. Moreover, the lifting of RP
[d] between two minimal systems

is obtained, which implies that the factor induced by RP
[d] is the maximal d-step

nilfactor. The above results extend the same conclusions proved by Host, Kra and
Maass for minimal distal systems.

A combinatorial consequence is that if S is a dynamically syndetic subset of Z,
then for each d ≥ 1,

{(n1, . . . , nd) ∈ Z
d : n1ǫ1 + · · · + ndǫd ∈ S, ǫi ∈ {0, 1}, 1 ≤ i ≤ d}

is syndetic. In some sense this is the topological correspondence of the result
obtained by Host and Kra for positive upper Banach density subsets using ergodic
methods.

1. Introduction

The background of our study can be seen both in ergodic theory and topological
dynamics.

1.1. Background in ergodic theory. The connection between ergodic theory and
additive combinatorics was built in the 1970’s with Furstenberg’s beautiful proof of
Szemerédi’s theorem via ergodic theory [10]. Furstenberg’s proof paved the way for
obtaining new combinatorial results using ergodic methods, as well as leading to
numerous developments within ergodic theory. Roughly speaking, Furstenberg [10]
proved Szemerédi’s theorem via the following ergodic theorem: Let (X,B, µ, T ) be
a measure-preserving transformation on the probability space and let A ∈ B with
positive measure. Then for every integer d ≥ 1,

lim inf
N→∞

1

N

N−1∑

n=0

µ(A ∩ T−nA ∩ T−2nA ∩ . . . ∩ T−dnA) > 0.
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2 Regionally proximal relation of order d

So it is natural to ask about the convergence of these averages, or more generally
about the convergence in L2(X, µ) of the multiple ergodic averages

1

N

N−1∑

n=0

f1(T
nx) . . . fd(T

dnx),

where d ≥ 1 is an integer, (X,B, µ, T ) is a measure preserving system, and f1, . . . , fd ∈
L∞(X, µ). After nearly 30 years’ efforts of many researchers, this problem was finally
solved in [19, 30].

In their proofs the notion of characteristic factors plays a great role. Let’s see
why this notion is important. Loosely speaking, the Structure Theorem of [19, 30]
states that if one wants to understand the multiple ergodic averages

1

N

N−1∑

n=0

f1(T
nx) . . . fd(T

dnx),

one can replace each function fi by its conditional expectation on some d-step nil-
system (1-step nilsystem is the Kroneker’s one). Thus one can reduce the problem
to the study of the same average in a nilsystem, i.e. reducing the average in an
arbitrary system to a more tractable question. For example, von Neumann’s mean
ergodic theorem can be proved by using Kroneker’s factor. Note that the multiple
ergodic average for commuting transformations was obtained by Tao [26] using fini-
tary ergodic method, see [3, 18] for more traditional ergodic proofs. Unfortunately,
in this more general setting, the characteristic factors are not known up till now.

In [19], some useful tools, such as dynamical parallelepipeds, ergodic uniformity
seminorms etc., are introduced in the study of dynamical systems. Their further
applications were discussed in [18, 20, 21, 22, 23]. Now a natural and important
question is what the topological correspondence of characteristic factors is. The
history how to obtain the topological counterpart of characteristic factors will be
discussed in the next subsection.

1.2. Background in topological dynamics. In some sense an equicontinuous
system is the simplest system in topological dynamics. In the study of topological
dynamics, one of the first problems was to characterize the equicontinuous structure
relation Seq(X) of a system (X, T ); i.e. to find the smallest closed invariant equiva-
lence relation R(X) on (X, T ) such that (X/R(X), T ) is equicontinuous. A natural
candidate for R(X) is the so-called regionally proximal relation RP(X) [6]. By the
definition RP(X) is closed, invariant, and reflexive, but not necessarily transitive.
The problem was then to find conditions under which RP(X) is an equivalence
relation. It turns out to be a difficult problem. Starting with Veech [27], various
authors, including MacMahon [25], Ellis-Keynes [8], came up with various sufficient
conditions for RP(X) to be an equivalence relation. For somewhat different ap-
proach, see [2]. Note that in our case, T : X → X being homeomorphism and
(X, T ) being minimal, RP(X) is always an equivalence relation.

In [22, 23] the authors obtained a structure theorem for topological dynamical
systems, which can be viewed as an analog of the purely ergodic structure theorem
of [10, 19, 30]. Note that previously the counterpart of “characteristic factors” in
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topological dynamics was studied by Glasner [14, 15]. In [22, 23], for distal minimal
systems a certain generalization of the regionally proximal relation is used to produce
the maximal nilfactors.

Here is the notion of the regionally proximal relation of order d defined in [22].

Definition 1.1. Let (X, T ) be a system and let d ≥ 1 be an integer. A pair
(x, y) ∈ X×X is said to be regionally proximal of order d if for any δ > 0, there exist
x′, y′ ∈ X and a vector n = (n1, . . . , nd) ∈ Z

d such that d(x, x′) < δ, d(y, y′) < δ,
and

d(T n·ǫx′, T n·ǫy′) < δ for any ǫ ∈ {0, 1}d, ǫ 6= (0, . . . , 0),

where n · ǫ =
∑d

i=1 ǫini. The set of regionally proximal pairs of order d is denoted

by RP[d](X), which is called the regionally proximal relation of order d.

It is easy to see that RP[d](X) is a closed and invariant relation for all d ∈ N.

When d = 1, RP[d](X) is nothing but the classical regionally proximal relation.

In [22], for distal minimal systems the authors showed that RP[d](X) is a closed
invariant equivalence relation, and the quotient of X under this relation is its max-
imal d-step nilfactor. So it remains the question open: is RP[d](X) an equivalence
relation for any minimal system? The purpose of the current paper is to settle down
the question.

1.3. Main results. In this article, we show that for all minimal systems RP[d](X)
is a closed invariant equivalence relation and the quotient of X under this relation
is its maximal d-step nilfactor.

Note that a subset S of Z is dynamically syndetic if there are a minimal system
(X, T ), x ∈ X and an open neighborhood U of x such that S = {n ∈ Z : T nx ∈ U}.
Equivalently, S ⊂ Z is dynamically syndetic if and only if S contains {0} and 1S is a
minimal point of ({0, 1}Z, σ), where σ is the shift map. A subset S of Z

d is syndetic
if there exists a finite subset F ⊂ Z

d such that S + F = Z
d. A combinatorial

consequence of our results is that if S is a dynamically syndetic subset of Z, then
for each d ≥ 1,

{(n1, . . . , nd) ∈ Z
d : n1ǫ1 + · · · + ndǫd ∈ S, ǫi ∈ {0, 1}, 1 ≤ i ≤ d}

is syndetic. In some sense this is the topological correspondence of the following
result obtained by Host and Kra for positive upper Banach density subsets using
ergodic methods.

Theorem 1.2. [19, Theorem 1.5] Let A ⊂ Z with d(A) ≥ δ > 0 and let d ∈ N, then

{n = (n1, n2, . . . , nk) ∈ Z
d : d

( ⋂

ǫ∈{0,1}d

(A + ǫ · n)
)
≥ δ2d

}

is syndetic, where d(B) denotes the upper density of B ⊂ Z.

In [22] the authors showed that the regionally proximal relation of order d is
an equivalence relation for minimal distal systems without using the enveloping
semigroup theory except one known result that the distal extension between minimal
systems is open (which is proved using the theory). In our situation we are forced
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to use the theory. The main idea of the proof is the following. First using the
structure theory of a minimal system we show that the face transformations acting
on the diagonal points are minimal, and then we prove some equivalence condition
for two point being regionally proximal of order d. A key lemma here is to switch
from a cubic point to a face point. Combining the minimality and the condition we
show that the regionally proximal relation of order d is an equivalence relation for
minimal systems. Finally we show that RP[d] can be lifted up from a factor to an
extension between two minimal systems, which implies that the factor induced by
RP[d] is the maximal d-step nilfactor.

We remark that many results of the paper can be extended to abelian group
actions.

1.4. Organization of the paper. In Section 2, we introduce the basic notions
used in the paper. Since we will use tools from abstract topological dynamics, we
collect basic facts about it in Appendix A. In Section 3, main results of the paper
are discussed. The three sections followed are devoted to give proofs of main results.
Note that lots of results obtained there have their independent interest. In the final
section some applications are given.

1.5. Thanks. We thank V. Bergelson, E. Glasner, W. Huang, H.F. Li, A. Maass
for help discussions. Particularly we thank E. Glasner for sending us his note on the
topic, and H.F. Li for the very careful reading which helps us correct misprints and
simplify some proofs.

2. Preliminaries

2.1. Topological dynamical systems. A transformation of a compact metric
space X is a homeomorphism of X to itself. A topological dynamical system, re-
ferred to more succinctly as just a system, is a pair (X, T ), where X is a compact
metric space and T : X → X is a transformation. We use d(·, ·) to denote the metric
in X. We also make use of a more general definition of a topological system. That
is, instead of just a single transformation T , we will consider a countable abelian
group of transformations. We collect basic facts about topological dynamics under
general group actions in Appendix A.

A system (X, T ) is transitive if there exists some point x ∈ X whose orbit
O(x, T ) = {T nx : n ∈ Z} is dense in X and we call such a point a transitive
point. The system is minimal if the orbit of any point is dense in X. This property
is equivalent to say that X and the empty set are the only closed invariant sets in
X.

2.2. Cubes and faces. Let X be a set, let d ≥ 1 be an integer, and write [d] =
{1, 2, . . . , d}. We view {0, 1}d in one of two ways, either as a sequence ǫ = ǫ1 . . . ǫd

of 0′s and 1′s written without commas or parentheses; or as a subset of [d]. A subset
ǫ corresponds to the sequence (ǫ1, . . . , ǫd) ∈ {0, 1}d such that i ∈ ǫ if and only if
ǫi = 1 for i ∈ [d]. For example, 0 = (0, 0, . . . , 0) ∈ {0, 1}d is the same to ∅ ⊂ [d].
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If n = (n1, . . . , nd) ∈ Z
d and ǫ ∈ {0, 1}d, we define

n · ǫ =
d∑

i=1

niǫi.

If we consider ǫ as ǫ ⊂ [d], then n · ǫ =
∑

i∈ǫ ni.

We denote X2d

by X [d]. A point x ∈ X [d] can be written in one of two equivalent
ways, depending on the context:

x = (xǫ : ǫ ∈ {0, 1}d) = (xǫ : ǫ ⊂ [d]).

Hence x∅ = x0 is the first coordinate of x. As examples, points in X [2] are like

(x00, x10, x01, x11) = (x∅, x{1}, x{2}, x{1,2}),

and points in X [3] are like

(x000, x100, x010, x110, x001, x101, x011, x111)

= (x∅, x{1}, x{2}, x{1,2}, x3, x{1,3}, x{2,3}, x{1,2,3}).

For x ∈ X, we write x[d] = (x, x, . . . , x) ∈ X [d]. The diagonal of X [d] is ∆[d] =
{x[d] : x ∈ X}. Usually, when d = 1, denote the diagonal by ∆X or ∆ instead of
∆[1].

A point x ∈ X [d] can be decomposed as x = (x′,x′′) with x′,x′′ ∈ X [d−1], where
x′ = (xǫ0 : ǫ ∈ {0, 1}d−1) and x′′ = (xǫ1 : ǫ ∈ {0, 1}d−1). We can also isolate the first

coordinate, writing X
[d]
∗ = X2d−1 and then writing a point x ∈ X [d] as x = (x∅,x∗),

where x∗ = (xǫ : ǫ 6= ∅) ∈ X
[d]
∗ .

Identifying {0, 1}d with the set of vertices of the Euclidean unit cube, a Euclidean
isometry of the unit cube permutes the vertices of the cube and thus the coordinates
of a point x ∈ X [d]. These permutations are the Euclidean permutations of X [d].

2.3. Dynamical parallelepipeds.

Definition 2.1. Let (X, T ) be a topological dynamical system and let d ≥ 1 be an
integer. We define Q[d](X) to be the closure in X [d] of elements of the form

(T n·ǫx = T n1ǫ1+...+ndǫdx : ǫ = (ǫ1, . . . , ǫd) ∈ {0, 1}d),

where n = (n1, . . . , nd) ∈ Z
d and x ∈ X. When there is no ambiguity, we write Q[d]

instead of Q[d](X). An element of Q[d](X) is called a (dynamical) parallelepiped of
dimension d.

It is important to note that Q[d] is invariant under the Euclidean permutations of
X [d].

As examples, Q[2] is the closure in X [2] = X4 of the set

{(x, T mx, T nx, T n+mx) : x ∈ X, m, n ∈ Z}

and Q[3] is the closure in X [3] = X8 of the set

{(x, T mx, T nx, T m+nx, T px, T m+px, T n+px, T m+n+px) : x ∈ X, m, n, p ∈ Z}.
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Definition 2.2. Let φ : X → Y and d ∈ N. Define φ[d] : X [d] → Y [d] by (φ[d]x)ǫ =
φxǫ for every x ∈ X [d] and every ǫ ⊂ [d].

Let (X, T ) be a system and d ≥ 1 be an integer. The diagonal transformation of
X [d] is the map T [d].

Definition 2.3. Face transformations are defined inductively as follows: Let T [0] =

T , T
[1]
1 = id × T . If {T

[d−1]
j }d−1

j=1 is defined already, then set

T
[d]
j = T

[d−1]
j × T

[d−1]
j , j ∈ {1, 2, . . . , d − 1},

T
[d]
d = id[d−1] × T [d−1].

It is easy to see that for j ∈ [d], the face transformation T
[d]
j : X [d] → X [d] can be

defined by, for every x ∈ X [d] and ǫ ⊂ [d],

T
[d]
j x =

{
(T

[d]
j x)ǫ = Txǫ, j ∈ ǫ;

(T
[d]
j x)ǫ = xǫ, j 6∈ ǫ.

The face group of dimension d is the group F [d](X) of transformations of X [d]

spanned by the face transformations. The parallelepiped group of dimension d is the
group G[d](X) spanned by the diagonal transformation and the face transformations.
We often write F [d] and G[d] instead of F [d](X) and G[d](X), respectively. For G[d]

and F [d], we use similar notations to that used for X [d]: namely, an element of either
of these groups is written as S = (Sǫ : ǫ ∈ {0, 1}d). In particular, F [d] = {S ∈ G[d] :
S∅ = id}.

For convenience, we denote the orbit closure of x ∈ X [d] under F [d] by F [d](x),

instead of O(x,F [d]).
It is easy to verify that Q[d] is the closure in X [d] of

{Sx[d] : S ∈ F [d], x ∈ X}.

If x is a transitive point of X, then Q[d] is the closed orbit of x[d] under the group
G[d].

2.4. Nilmanifolds and nilsystems. Let G be a group. For g, h ∈ G, we write
[g, h] = ghg−1h−1 for the commutator of g and h and we write [A, B] for the subgroup
spanned by {[a, b] : a ∈ A, b ∈ B}. The commutator subgroups Gj, j ≥ 1, are
defined inductively by setting G1 = G and Gj+1 = [Gj , G]. Let k ≥ 1 be an integer.
We say that G is k-step nilpotent if Gk+1 is the trivial subgroup.

Let G be a k-step nilpotent Lie group and Γ a discrete cocompact subgroup of
G. The compact manifold X = G/Γ is called a k-step nilmanifold. The group G
acts on X by left translations and we write this action as (g, x) 7→ gx. The Haar
measure µ of X is the unique probability measure on X invariant under this action.
Let τ ∈ G and T be the transformation x 7→ τx of X. Then (X, T, µ) is called a
basic k-step nilsystem. When the measure is not needed for results, we omit and
write that (X, T ) is a basic k-step nilsystem.

We also make use of inverse limits of nilsystems and so we recall the definition
of an inverse limit of systems (restricting ourselves to the case of sequential inverse
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limits). If (Xi, Ti)i∈N are systems with diam(Xi) ≤ 1 and φi : Xi+1 → Xi are factor
maps, the inverse limit of the systems is defined to be the compact subset of

∏
i∈N

Xi

given by {(xi)i∈N : φi(xi+1) = xi, i ∈ N}, which is denoted by lim
←−

{Xi}i∈N. It is a

compact metric space endowed with the distance d(x, y) =
∑

i∈N
1/2idi(xi, yi). We

note that the maps {Ti} induce a transformation T on the inverse limit.

Theorem 2.4 (Host-Kra-Maass). [22, Theorem 1.2] Assume that (X, T ) is a tran-
sitive topological dynamical system and let d ≥ 2 be an integer. The following
properties are equivalent:

(1) If x, y ∈ Q[d](X) have 2d − 1 coordinates in common, then x = y.
(2) If x, y ∈ X are such that (x, y, . . . , y) ∈ Q[d](X), then x = y.
(3) X is an inverse limit of basic (d − 1)-step minimal nilsystems.

A transitive system satisfying either of the equivalent properties above is called a
(d − 1)-step nilsystem or a system of order (d − 1).

2.5. Definition of the regionally proximal relations.

Definition 2.5. Let (X, T ) be a system and let d ≥ 1 be an integer. A pair
(x, y) ∈ X×X is said to be regionally proximal of order d if for any δ > 0, there exist
x′, y′ ∈ X and a vector n = (n1, . . . , nd) ∈ Z

d such that d(x, x′) < δ, d(y, y′) < δ,
and

d(T n·ǫx′, T n·ǫy′) < δ for any nonempty ǫ ⊂ [d].

(In other words, there exists S ∈ F [d] such that d(Sǫx
′, Sǫy

′) < δ for every ǫ 6= ∅.)
The set of regionally proximal pairs of order d is denoted by RP[d] (or by RP[d](X)
in case of ambiguity), which is called the regionally proximal relation of order d.

It is easy to see that RP[d] is a closed and invariant relation for all d ∈ N. Note
that

. . . ⊆ RP[d+1] ⊆ RP[d] ⊆ . . .RP[2] ⊆ RP[1] = RP(X).

By the definition it is easy to verify the following equivalent condition for RP[d],
see [22].

Lemma 2.6. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. Let

x, y ∈ X. Then (x, y) ∈ RP[d] if and only if there is some a∗ ∈ X
[d]
∗ such that

(x, a∗, y, a∗) ∈ Q[d+1].

Remark 2.7. When d = 1, RP[1] is the classical regionally proximal relation. If
(X, T ) is minimal, it is easy to verify directly the following useful fact:

(x, y) ∈ RP = RP[1] ⇔ (x, x, y, x) ∈ Q[2] ⇔ (x, y, y, y) ∈ Q[2].

3. Main results

In this section we will state the main results of the paper.
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3.1. F [d]-minimal sets in Q[d]. To show RP[d] is an equivalence relation we are
forced to investigate the F [d]-minimal sets in Q[d] and the equivalent conditions for
RP[d]. Those are done in Theorem 3.1 and Theorem 3.2 respectively.

First recall that (Q[d],G[d]) is a minimal system, which is mentioned in [22]. But
we need to know F [d]-minimal sets in Q[d]. Let (X, T ) be a system and x ∈ X.

Recall that F [d](x) = O(x,F [d]) for x ∈ X [d]. Set

Q[d][x] = {z ∈ Q[d](X) : z∅ = x}.

Theorem 3.1. Let (X, T ) be a minimal system and d ∈ N. Then

(1) (F [d](x[d]),F [d]) is minimal for all x ∈ X.

(2) (F [d](x[d]),F [d]) is the unique F [d]-minimal subset in Q[d][x] for all x ∈ X.

3.2. RP[d] is an equivalence relation. With the help of Theorem 3.1, we can
prove that RP[d] is an equivalence relation. First we have the following equivalent
conditions for RP[d].

Theorem 3.2. Let (X, T ) be a minimal system and d ∈ N. Then the following
conditions are equivalent:

(1) (x, y) ∈ RP[d];

(2) (x, y, y, . . . , y) = (x, y
[d+1]
∗ ) ∈ Q[d+1];

(3) (x, y, y, . . . , y) = (x, y
[d+1]
∗ ) ∈ F [d+1](x[d+1]).

Proof. (3) ⇒ (2) is obvious. (2) ⇒ (1) follows from Lemma 2.6. Hence it suffices to
show (1) ⇒ (3).

Let (x, y) ∈ RP[d]. Then by Lemma 2.6 there is some a∗ ∈ X
[d]
∗ such that

(x, a∗, y, a∗) ∈ Q[d+1]. Observe that (y, a∗) ∈ Q[d]. By Theorem 3.1-(2), there is a
sequence {Fk} ⊂ F [d] such that Fk(y, a∗) → y[d], k → ∞. Hence

Fk × Fk(x, a∗, y, a∗) → (x, y[d]
∗ , y, y[d]

∗ ) = (x, y[d+1]
∗ ), k → ∞.

Since Fk × Fk ∈ F [d+1] and (x, a∗, y, a∗) ∈ Q[d+1], we have that (x, y
[d+1]
∗ ) ∈ Q[d+1].

By Theorem 3.1-(1), y[d+1] is F [d+1]-minimal. It follows that (x, y
[d+1]
∗ ) is also

F [d+1]-minimal. Now (x, y
[d+1]
∗ ) ∈ Q[d+1][x] and by Theorem 3.1-(2), (F [d+1](x[d+1]),F [d+1])

is the unique F [d+1]-minimal subset in Q[d+1][x]. Hence we have that (x, y
[d+1]
∗ ) ∈

F [d+1](x[d+1]), and the proof is completed. �

By Theorem 3.2, we have the following theorem immediately.

Theorem 3.3. Let (X, T ) be a minimal system and d ∈ N. Then RP[d](X) is an
equivalence relation.

Proof. Let (x, y), (y, z) ∈ RP[d](X). By Theorem 3.2, we have

(y, x, x, . . . , x), (y, z, z, . . . , z) ∈ F [d+1](y[d+1]).

By Theorem 3.1 (F [d+1](y[d+1]),F [d+1]) is minimal, it follows that (y, z, z, . . . , z) ∈

F [d+1](y, x, x, . . . , x). Thus (x, z, z, . . . , z) ∈ F [d+1](x[d+1]). By Theorem 3.2, (x, z) ∈
RP[d](X). �
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Remark 3.4. By Theorem 3.2 we know that in the definition of regionally proximal
relation of d, x′ can be replaced by x. More precisely, (x, y) ∈ RP[d] if and only if
for any δ > 0 there exist y′ ∈ X and a vector n = (n1, . . . , nd) ∈ Z

d such that for
any nonempty ǫ ⊂ [d]

d(y, y′) < δ and d(T n·ǫx, T n·ǫy′) < δ.

3.3. RP[d] and nilfactors. S ⊂ Z is thick if it contains arbitrarily long runs of
positive integers, i.e. there is a subsequence {ni} of Z such that S ⊃

⋃∞
i=1{ni, ni +

1, . . . , ni + i}.
Let {bi}i∈I be a finite or infinite sequence in Z. One defines

FS({bi}i∈I) =
{∑

i∈α

bi : α is a finite non-empty subset of I
}

Note when I = [d],

FS({bi}
d
i=1) =

{∑

i∈I

biǫi : ǫ = (ǫi) ∈ {0, 1}d \ {∅}
}
.

F is an IP set if it contains some FS({pi}
∞
i=1), where pi ∈ Z.

Lemma 3.5. Let (X, T ) be a system. Then for every d ∈ N, the proximal relation

P(X) ⊆ RP[d](X).

Proof. Let (x, y) ∈ P(X) and δ > 0. Set

Nδ(x, y) = {n ∈ Z : d(T nx, T ny) < δ}.

It is easy to check Nδ(x, y) is thick and hence an IP set. From this it follows that

P(X) ⊆ RP[d](X). More precisely, set FS({pi}
∞
i=1) ⊆ Nδ(x, y), then for any d ∈ N,

d(T p1ǫ1+...+pdǫdx, T p1ǫ1+...+pdǫdy) < δ, ǫ = (ǫ1, . . . , ǫd) ∈ {0, 1}d, ǫ 6= (0, . . . , 0).

That is, (x, y) ∈ RP[d] for all d ∈ N. �

The following corollary was observed in [23] for d = 2.

Corollary 3.6. If (X, T ) is a weakly mixing system, then for every d ∈ N,

RP[d] = X × X.

Proof. Since a system (X, T ) is weakly mixing if and only if P(X) = X × X (see
[1]), so the result follows from Lemma 3.5. �

We remark that more interesting properties for weakly mixing systems will be
shown in Theorem 3.11 in the sequel.

Proposition 3.7. Let (X, T ) be a minimal system and d ∈ N. Then RP[d] = ∆ if
and only if X is a system of order d.

Proof. It follows from Theorem 3.2 and Theorem 2.4 directly. �
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3.4. Maximal nilfactors. Note that the lifting property of RP[d] between two
minimal systems is obtained in the paper. This result is new even for minimal distal
systems.

Theorem 3.8. Let π : (X, T ) → (Y, T ) be a factor map and d ∈ N. Then

(1) π × π(RP[d](X)) ⊆ RP[d](Y );

(2) if (X, T ) is minimal, then π × π(RP[d](X)) = RP[d](Y ).

Proof. (1) It follows from the definition.
(2) It will be proved in Section 6. �

Theorem 3.9. Let π : (X, T ) → (Y, T ) be a factor map of minimal systems and
d ∈ N. Then the following conditions are equivalent:

(1) (Y, T ) is a system of order d;

(2) RP[d](X) ⊂ Rπ.

Especially the quotient of X under RP[d](X) is the maximal d-step nilfactor of X,

i.e. any d-step nilfactor of X is the factor of X/RP[d](X).

Proof. Assume that (Y, T ) is a system of order d. Then we have RP[d](Y ) = ∆Y by
Proposition 3.7. Hence by Theorem 3.8-(1),

RP[d](X) ⊂ (π × π)−1(∆Y ) = Rπ.

Conversely, assume that RP[d](X) ⊂ Rπ. If (Y, T ) is not a system of order d, then

by Proposition 3.7, RP[d](Y ) 6= ∆Y . Let (y1, y2) ∈ RP[d]\∆Y . Now by Theorem 3.8,

there are x1, x2 ∈ X such that (x1, x2) ∈ RP[d](X) with (π × π)(x1, x2) = (y1, y2).

Since π(x1) = y1 6= y2 = π(x2), (x1, x2) 6∈ Rπ. This means that RP[d](X) 6⊂ Rπ, a
contradiction! The proof is completed. �

Remark 3.10. In [22, Proposition 4.5] it is showed that this proposition holds for
minimal distal systems.

3.5. Weakly mixing systems. In this subsection we completely determine Q[d]

and F [d](x[d]) for minimal weakly mixing systems.

Theorem 3.11. Let (X, T ) be a minimal weakly mixing system and d ≥ 1. Then

(1) (Q[d],G[d]) is minimal and Q[d] = X [d];

(2) For all x ∈ X, (F [d](x[d]),F [d]) is minimal and

F [d](x[d]) = {x} × X [d]
∗ = {x} × X2d−1.

Proof. The fact that (Q[d],G[d]) is minimal and Q[d] = X [d] is followed from (2) easily.
Hence it suffices to show (2).

We will show for any point of x ∈ X [d] with x∅ = x, we have

F [d](x) = {x} × X [d]
∗ ,

which obviously implies (2). First note that it is trivial for d = 1. Now we assume
that it holds for d − 1, d ≥ 2.

Let x = (x′,x′′) ∈ Q[d]. Since (X, T ) is weakly mixing, (X [d−1], T [d−1]) is transitive
(see [9]). Let a ∈ X [d−1] be a transitive point. By the induction for d − 1, Q[d−1] =
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X [d−1] is G[d]-minimal. Hence a ∈ O(x′′,G[d−1]) and there is some sequence Fk ∈ F [d]

and w ∈ X [d−1] such that

Fkx = Fk(x
′,x′′) → (w, a), k → ∞.

Especially (w, a) ∈ F [d](x). Note that

(T
[d]
d )n(w, a) = (w, (T [d−1])na) ∈ F [d](x).

We have
{w} × O(a, T [d−1]) ⊂ F [d](x)

And so

(3.1) {w} × X [d−1] = {w} × O(a, T [d−1]) ⊂ F [d](x).

By the induction assumption for d − 1, w is minimal for F [d−1] action and

(3.2) F [d−1](w) = O(w,F [d−1]) = {x} × X [d−1]
∗ .

By acting the elements of F [d] on (3.1), we have

(3.3) O(w,F [d−1]) × X [d−1] ⊂ F [d](x).

By (3.2) and (3.3), we have

{x} × X [d−1]
∗ × X [d−1] = {x} × X [d]

∗ ⊂ F [d](x).

This completes the proof. �

4. F [d]-minimal sets in Q[d]

In this section we discuss F [d]-minimal sets in Q[d] and prove Theorem 3.1-(1).
First we will discuss proximal extensions, distal extensions and weakly mixing ex-
tension one by one. They exhibit different properties and satisfy our requests by
different reasons. After that, the proof of Theorem 3.1-(1) will be given. The proof of
Theorem 3.1-(2) will be given in next section. For notions which are not mentioned
before see Appendix A.

4.1. Idea of the proof of Theorem 3.1-(1). Before going on let us say something
about the idea in the proof of Theorem 3.1-(1). By the structure theorem A.6, for
a minimal system (X, T ), we have the following diagram.

X∞
π

−−−→ Xyφ

Y∞

In this diagram Y∞ is a strictly PI system, φ is weakly mixing and RIC, and π is
proximal.

So if we want to show that (F [d](x[d]),F [d]) is minimal for all x ∈ X, it is sufficient
to show it holds for X∞. By the definition of X∞ and Y∞, it is sufficient to consider
the following cases: (1) proximal extensions; (2) distal or equicontinuous extensions;
(3) RIC weakly mixing extensions and (4) the inverse limit. Since the inverse limit
is easy to handle, we need only focus on the three different extensions.
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4.2. Properties about three kinds of extensions. In this subsection we collect
some properties about proximal, distal and weakly mixing extensions, which will
be used frequently in the sequel. As in Appendix A, (X, T ) is a system under the
action of a topological group T , and E(X, T ) is its enveloping semigroup.

The following two lemmas are folk results, for completeness we include proofs.

Lemma 4.1. Let π : (X, T ) → (Y, T ) be a proximal extension of minimal systems.
Let x ∈ X, y = π(x) and let x1, x2, . . . , xn ∈ π−1(y). Then there is some p ∈ E(X, T )
such that

px1 = px2 = . . . = pxn = x.

Especially, when x = x1, we have that (x1, x2, . . . , xn) is proximal to (x, x, . . . , x) in
(Xn, T ).

Proof. Since (x1, x2) ∈ Rπ ⊂ P(X, T ), by Proposition A.3 there is some p ∈ E(X, T )
such that px1 = px2.

Now assume that for 2 ≤ j ≤ n − 1, there is some p1 ∈ E(X, T ) such that
p1x1 = p1x2 = . . . = p1xj . Since Rπ is closed and invariant and (xj , xj+1) ∈ Rπ,
(p1xj , p1xj+1) ∈ Rπ ⊂ P(X, T ). So by Proposition A.3 there is p2 ∈ E(X, T ) such
that p2(p1xj) = p2(p1xj+1). Let p = p2p1, then we have

px1 = px2 = . . . = pxj = pxj+1.

Inductively, there is some p ∈ E(X, T ) such that

px1 = px2 = . . . = pxn.

Since (X, T ) is minimal, we can assume that they are equal to x.
If x1 = x, then px1 = px2 = . . . = pxn = x = x1 and hence

p(x1, x2, . . . , xn) = (x, x, . . . , x) = p(x, x, . . . , x).

That is, (x1, x2, . . . , xn) is proximal to (x, x, . . . , x) in (Xn, T ). �

Lemma 4.2. Let π : (X, T ) → (Y, T ) be a distal extension of systems. Then for
any x ∈ X, if π(x) is minimal in (Y, T ), then x is minimal in (X, T ). Especially,
if (Y, T ) is semi-simple (i.e. every point is minimal), then so is (X, T ).

Proof. Let x ∈ X and y = π(x). Since y is a minimal point, by Proposition A.2
there is some minimal idempotent u ∈ E(X, T ) such that uy = y. Then π(ux) =
uπ(x) = uy = y. Hence ux, x ∈ π−1(y). Since (ux, x) ∈ P(X, T ) (Proposition A.3)
and π is distal, we have ux = x. That is, x is a minimal point of X by Proposition
A.2. �

Now we discuss weakly mixing extensions. We need Theorem 4.3, which is a
generalization of [1, Chapter 14, Theorem 28]. Note that in [17, Theorem 2.7 and
Corollary 2.9] Glasner showed that Rn

π is transitive. So Theorem 4.3 is a slightly
strengthen of the results in [17]. Since its proof needs some techniques in the en-
veloping semigroup theory, we leave it to the appendix.

Theorem 4.3. Let π : (X, T ) → (Y, T ) be a RIC weakly mixing extension of
minimal systems, then for all n ≥ 1 and y ∈ Y , there exists a transitive point
(x1, x2, . . . , xn) of Rn

π with x1, x2, . . . , xn ∈ π−1(y).
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Note that each RIC extension is open, and π : X → Y is open if and only if
Y → 2X , y 7→ π−1(y) is continuous, see for instance [29]. Using Theorem 4.3 we
have the following lemma, which will be used in the sequel.

Lemma 4.4. Let π : (X, T ) → (Y, T ) be a RIC weakly mixing extension of minimal
systems of (X, T ) and (Y, T ). Then for each y ∈ Y and d ≥ 1, we have

(1) (π−1(y))
[d]

= (π−1(y))
2d

⊂ Q[d](X),
(2) for all x ∈ X [d] with x∅ = x and π[d](x) = y[d]

{x} ×
(
π−1(y)

)[d]

∗
= {x} ×

(
π−1(y)

)2d−1
⊂ F [d](x).

Proof. The idea of proof is similar to Theorem 3.11. When d = 1, for any (x, x′) ∈

X [1] = X × X, F [1](x, x′) = O ((x, x′), id × T ) = {x} × X and Q[1](X) = X × X.
Hence the results hold obviously. Now we show the case for d = 2. Let x =
(x1, x2, x3, x4) ∈ X [2] with π[2](x1, x2, x3, x4) = y[2]. By Theorem 4.3, there is a
transitive point (a, b) of (Rπ, T ×T ) with π(a) = π(b) = y. Since (X, T ) is minimal,
there is some sequence {ni} ⊂ Z such that T nix3 → a, i → ∞. Without loss of
generality, assume that T nix4 → x′4, i → ∞ for some x′4 ∈ X. Since π(a) = y,
π(x′4) = y too. So

(4.1) (id × id × T × T )ni(x1, x2, x3, x4) → (x1, x2, a, x′4), i → ∞.

Since (X, T ) is minimal, there is some sequence {mi} ⊂ Z such that Tmix′4 → b, i →
∞. Without loss of generality, assume that Tmix2 → x′2, i → ∞ for some x′2 ∈ X.
Since π(b) = y, π(x′2) = y too. So

(4.2) (id × T × id × T )mi(x1, x2, a, x′4) → (x1, x
′
2, a, b), i → ∞.

Hence by (4.1) and (4.2),

(4.3) (x1, x
′
2, a, b) ∈ F [2](x).

Thus for all n ∈ Z,

(x1, x
′
2, T

na, T nb) = (id × id × T × T )n(x1, x
′
2, a, b) ∈ F [2](x).

Since (a, b) is a transitive point of (Rπ, T × T ), it follows that

(4.4) {x1} × {x′2} × π−1(y) × π−1(y) ⊂ {x1} × {x′2} × Rπ ⊂ F [2](x).

Now we show that

(4.5) {x1} × π−1(y) × π−1(y) × π−1(y) = {x1} × (π−1(y))3 ⊂ F [2](x).

For any z ∈ π−1(y), there is a sequence ki ⊂ Z such that T kix′2 → z, i → ∞.
Thus T kiy = T kiπ(x′2) = π(T kix′2) → π(z) = y, i → ∞. Since π is open, we have
T kiπ−1(y) = π−1(T kiy) → π−1(y), i → ∞ in the Hausdorff metric. Thus

{x1} × {z} × π−1(y)2 ⊂ ∪∞i=1(id × T × id × T )ki({x1} × {x′2} × π−1(y)2) ⊂ F [2](x).

Since z is arbitrary, we have (4.5). Similarly, we have (π−1(y))
4
⊂ Q[2](X) and we

are done for d = 2.

Now assume we have (1) and (2) for d − 1 already, and show the case for d. Let
x ∈ X [d] with x∅ = x and π[d](x) = y[d].
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Let x = (x′,x′′). Since π is weakly mixing, (R2d−1

π , T [d−1]) is transitive. By

Theorem 4.3 there is a ∈ R2d−1

π which is a transitive point of (R2d−1

π , T [d−1]) and
π[d−1](a) = y[d−1]. Without loss of generality, we may assume that a∅ = x′′∅ (i.e.
the first coordinate of a is equal to that of x′′), otherwise we may use the face

transformation id[d−1] × T [d−1] to find some point in F [d](x) satisfying this property.
By the induction assumption for d − 1,

a ∈ {x′′∅} ×
(
π−1(y)

)2d−1−1
⊂ F [d−1](x′′).

Hence there is some sequence Fk ∈ F [d−1] and w ∈ X [d−1] such that

Fk × Fk(x) = Fk × Fk(x
′,x′′) → (w, a), k → ∞.

Especially (w, a) ∈ F [d](x). Since π[d](x) = y[d] and π[d−1](a) = y[d−1], it is easy to
verify that π[d−1](w) = y[d−1] and w∅ = x. Note that

(T
[d]
d )n(w, a) = (w, (T [d−1])na) ∈ F [d](x).

We have
{w} × O(a, T [d−1]) ⊂ F [d](x).

And so

(4.6) {w} ×
(
π−1(y)

)2d−1

⊂ {w} × R2d−1

π = {w} × O(a, T [d−1]) ⊂ F [d](x).

By the induction assumption for d − 1, for w we have

(4.7) {x} ×
(
π−1(y)

)2d−1−1
⊂ F [d−1](w).

Hence for all z ∈ {x} × (π−1(y))
2d−1−1

, there is some sequence {Hk} ⊂ F [d−1] such
that Hkw → z, k → ∞. Since π is open, similar to the proof of (4.5), we have that

Hk (π−1(y))
2d−1

→ (π−1(y))
2d−1

, k → ∞. Hence

Hk × Hk

(
{w} ×

(
π−1(y)

)2d−1 )
→ {z} ×

(
π−1(y)

)2d−1

, k → ∞.

Since Hk × Hk ∈ F [d] and z ∈ {x} × (π−1(y))
2d−1−1

is arbitrary, it follows from
(4.6) that

{x} ×
(
π−1(y)

)2d−1−1
×

(
π−1(y)

)2d−1

= {x} ×
(
π−1(y)

)2d−1
⊂ F [d](x).

Now by this fact it is easy to get (π−1(y))
[d]

= (π−1(y))
2d

⊂ Q[d](X). So (1) and (2)
hold for the case d. This completes the proof. �

In fact with a small modification of the above proof one can show that R2d

π ⊂

Q[d](X). We do not know if {x} × R2d−1
π ⊂ F [d](x).

4.3. Proof of Theorem 3.1-(1). A subset S ⊆ Z is a central set if there exists
a system (X, T ), a point x ∈ X and a minimal point y ∈ X proximal to x, and a
neighborhood Uy of y such that N(x, Uy) ⊂ S. It is known that any central set is
an IP-set [11, Proposition 8.10.].

Proposition 4.5. Let π : (X, T ) → (Y, T ) be a proximal extension of minimal

systems and d ∈ N. If (F [d](y[d]),F [d]) is minimal for all y ∈ Y , then (F [d](x[d]),F [d])
is minimal for all x ∈ X.
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Proof. It is sufficient to show that for any x ∈ F [d](x[d]), we have x[d] ∈ F [d](x).

Let y = π(x). Then by the assumption (F [d](y[d]),F [d]) is minimal. Note that

π[d] : (F [d](x[d]),F [d]) → (F [d](y[d]),F [d]) is a factor map. Especially there is some

y ∈ F [d](y[d]) such that π[d](x) = y.

Since y ∈ F [d](y[d]) and (F [d](y[d]),F [d]) is minimal, there is some sequence Fk ∈
F [d] such that

Fky → y[d], k → ∞.

Without loss of generality, we may assume that

(4.8) Fkx → z, k → ∞.

Then π[d](z) = limk π[d](Fkx) = limk Fky = y[d]. That is,

zǫ ∈ π−1(y), ∀ǫ ∈ {0, 1}d.

Since π is proximal, by Lemma 4.1 there is some p ∈ E(X, T ) such that

pzǫ = px = x, ∀ǫ ∈ {0, 1}d.

That is, pz = x[d] = px[d], i.e. z is proximal to x[d] under the action of T [d]. Since
x[d] is T [d]-minimal, for any neighborhood U of x[d],

NT [d](z,U) = {n ∈ Z : (T [d])nz ∈ U}

is a central set and hence contains some IP set FS({pi}
∞
i=1). Particularly,

FS({pi}
d
i=1) ⊆ NT [d](z,U).

This means for all ǫ ∈ {0, 1}d,

(T [d])p·ǫz ∈ U,

where p = (p1, p2, . . . , pd) ∈ Z
d. Especially,

(T p·ǫzǫ)ǫ∈{0,1}d ∈ U

In other words, we have

(T
[d]
1 )p1(T

[d]
2 )p2 . . . (T

[d]
d )pdz ∈ U.

Since U is arbitrary, we have that x[d] ∈ F [d](z). Combining with (4.8), we have

x[d] ∈ F [d](x).

Thus (F [d](x[d]),F [d]) is minimal. This completes the proof. �

Proposition 4.6. Let π : (X, T ) → (Y, T ) be a distal extension of minimal systems

and d ∈ N. If (F [d](y[d]),F [d]) is minimal for all y ∈ Y , then (F [d](x[d]),F [d]) is
minimal for all x ∈ X.

Proof. It follows from Lemma 4.2, since π[d] : (F [d](x[d]),F [d]) → (F [d](y[d]),F [d]) is
a distal extension. �

Proposition 4.7. Let π : (X, T ) → (Y, T ) be a RIC weakly mixing extension of

minimal systems and d ∈ N. If (F [d](y[d]),F [d]) is minimal for all y ∈ Y , then

(F [d](x[d]),F [d]) is minimal for all x ∈ X.
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Proof. It is sufficient to show that for any x ∈ F [d](x[d]), we have x[d] ∈ F [d](x).

Let y = π(x). Then by the assumption (F [d](y[d]),F [d]) is minimal. Note that

π[d] : (F [d](x[d]),F [d]) → (F [d](y[d]),F [d]) is a factor map. Especially there is some

y ∈ F [d](y[d]) such that π[d](x) = y.

Since y ∈ F [d](y[d]) and (F [d](y[d]),F [d]) is minimal, there is some sequence Fk ∈
F [d] such that

Fky → y[d], k → ∞.

Without loss of generality, we may assume that

(4.9) Fkx → z, k → ∞.

Then π[d](z) = limk π[d](Fkx) = limk Fky = y[d]. By Lemma 4.4

x[d] ∈ {x} ×
(
π−1(y)

)2d−1
⊂ F [d](z).

Together with (4.9), we have x[d] ∈ F [d](x). This completes the proof. �

Proof of Theorem 3.1-(1): By the structure theorem A.6, we have the following
diagram, where Y∞ is a strictly PI-system, φ is RIC weakly mixing extension and π
is proximal.

X∞
π

−−−→ Xyφ

Y∞

Since the inverse limit of minimal systems is minimal, it follows from Propositions
4.5, 4.6 that the result holds for Y∞. By Proposition 4.7 it also holds for X∞. Since
the factor of a minimal system is always minimal, it is easy to see that we have the
theorem for X. �

4.4. Minimality of (Q[d],G[d]). We will need the following theorem mentioned in
[22], where no proof is included. We give a proof (due to Glasner-Ellis) here for
completeness. Note one can also prove this result using the method in the previous
subsection.

Proposition 4.8. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. Let

A be a T [d]-minimal subset of X [d] and set N = O(A,F [d]) = cl
(⋃

{SA : S ∈ F [d]}
)
.

Then (N,G[d]) is a minimal system, and F [d]-minimal points are dense in N .

Proof. The proof is similar to the one in [16]. Let E = E(N,G[d]) be the enveloping
semigroup of (N,G[d]). Let πǫ : N → X be the projection of N on the ǫ-th compo-
nent, ǫ ∈ {0, 1}d. We consider the action of the group G[d] on the ǫ-th component
via the representation T [d] 7→ T and

T
[d]
j 7→

{
T, j ∈ ǫ;
id, j 6∈ ǫ.

With respect to this action of G[d] on X the map πǫ is a factor map πǫ : (N,G[d]) →
(X,G[d]). Let π∗ǫ : E(N,G[d]) → E(X,G[d]) be the corresponding homomorphism of
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enveloping semigroups. Notice that for this action of G[d] on X clearly E(X,G[d]) =
E(X, T ) as subsets of XX .

Let now u ∈ E(N, T [d]) be any minimal idempotent in the enveloping semigroup
of (N, T [d]). Choose v a minimal idempotent in the closed left ideal E(N,G[d])u.
Then vu = v, i.e. v <L u. Set for each ǫ ∈ {0, 1}d, uǫ = π∗ǫ u and vǫ = π∗ǫ v. We
want to show that also uv = u, i.e. u <L v. Note that as an element of E(N,G[d]) is
determined by its projections, it suffices to show that for each ǫ ∈ {0, 1}d, uǫvǫ = uǫ.

Since for each ǫ ∈ {0, 1}d the map π∗ǫ is a semigroup homomorphism, we have
vǫuǫ = vǫ as vu = v. In particular we deduce that vǫ is an element of the minimal
left ideal of E(X, T ) which contains uǫ. In turn this implies

uǫvǫ = uǫvǫuǫ = uǫ;

and it follows that indeed uv = u. Thus u is an element of the minimal left ideal of
E(N,G[d]) which contains v, an therefore u is a minimal idempotent of E(N,G[d]).

Now let x be an arbitrary point in A and let u ∈ E(N, T [d]) be a minimal idem-
potent with ux = x. By the above argument, u is also a minimal idempotent of

E(N,G[d]), whence N = O(A,F [d]) = O(x,G[d]) is G[d]-minimal.
Finally, we show F [d]-minimal points are dense in N . Let B ⊆ N be an F [d]-

minimal subset. Then O(B, T [d]) =
⋃
{(T [d])nB : n ∈ Z} is a G[d]-invariant subset

of N . Since (N,G[d]) is minimal, O(B, T [d]) is dense in N . Note that every point in
O(B, T [d]) is F [d]-minimal, hence the proof is completed. �

Setting A = ∆[d] we have

Corollary 4.9. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. Then
(Q[d],G[d]) is a minimal system, and F [d]-minimal points are dense in Q[d].

5. Proof of Theorem 3.1-(2)

In this section we prove Theorem 3.1-(2). That is, we show that (F [d](x[d]),F [d])
is the unique F [d]-minimal subset in Q[d][x] for all x ∈ X.

5.1. A useful lemma. The following lemma is a key step to show the uniqueness
of minimal sets in Q[d][x] for x ∈ X. Unlike the case when (X, T ) is minimal distal,
we need to use the enveloping semigroup theory.

Lemma 5.1. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. If
(x[d−1],w) ∈ Q[d](X) for some w ∈ X [d−1] and it is F [d]-minimal, then

(x[d−1],w) ∈ F [d](x[d]).

Proof. Since (x[d−1],w) ∈ Q[d](X) and (Q[d],G[d]) is a minimal system by Corol-
lary 4.9, (x[d−1],w) is in the G[d]-orbit closure of x[d], i.e. there are sequences
{nk}k, {n

1
k}k, . . . , {n

d
k}k ⊆ Z such that

(T
[d]
d )nk(T

[d]
1 )n1

k . . . (T
[d]
d−1)

nd−1
k (T [d])nd

k(x[d−1], x[d−1]) → (x[d−1],w), k → ∞.

Let
ak = (T

[d−1]
1 )n1

k . . . (T
[d−1]
d−1 )nd−1

k (T [d−1])nd

k(x[d−1]),
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then the above limit can be rewritten as

(5.1) (T
[d]
d )nk(ak, ak) = (id[d−1] × T [d−1])nk(ak, ak) → (x[d−1],w), k → ∞.

Let
π1 : (X [d],F [d]) → (X [d−1],F [d]), (x′,x′′) 7→ x′,

π2 : (X [d],F [d]) → (X [d−1],F [d]), (x′,x′′) 7→ x′′,

be projections to the first 2d−1 coordinates and last 2d−1 coordinates respectively.
For π1 we consider the action of the group F [d] on X [d−1] via the representation

T
[d]
i 7→ T

[d−1]
i for 1 ≤ i ≤ d − 1 and T

[d]
d 7→ id[d−1]. For π2 we consider the action of

the group F [d] on X [d−1] via the representation T
[d]
i 7→ T

[d−1]
i for 1 ≤ i ≤ d − 1 and

T
[d]
d 7→ T [d−1].
Denote the corresponding semigroup homomorphisms of enveloping semigroups

by

π∗1 : E(X [d],F [d]) → E(X [d−1],F [d]), π∗2 : E(X [d],F [d]) → E(X [d−1],F [d]).

Notice that for this action of F [d] on X [d−1] clearly

π∗1(E(X [d],F [d])) = E(X [d−1],F [d−1]) and π∗2(E(X [d],F [d])) = E(X [d−1],G[d−1])

as subsets of (X [d−1])X[d−1]
. Thus for any p ∈ E(X [d],F [d]) and x ∈ X [d], we have

px = p(x′,x′′) = (π∗1(p)x′, π∗2(p)x′′).

Now fix a minimal left ideal L of E(X [d],F [d]). By (5.1), ak → x[d−1], k → ∞.
Since (Q[d−1](X),G[d−1]) is minimal, there exists pk ∈ L such that ak = π∗2(pk)x

[d−1].
Without loss of generality, we assume that pk → p ∈ L. Then

π∗2(pk)x
[d−1] = ak → x[d−1] and π∗2(pk)x

[d−1] → π∗2(p)x[d−1].

Hence

(5.2) π∗2(p)x[d−1] = x[d−1].

Since L is a minimal left ideal and p ∈ L, by Proposition A.1 there exists a
minimal idempotent v ∈ J(L) such that vp = p. Then we have

π∗2(v)x[d−1] = π∗2(v)π∗2(p)x[d−1] = π∗2(vp)x[d−1] = π∗2(p)x[d−1] = x[d−1].

Let
F = G(F [d−1](x[d−1]), x[d−1]) = {α ∈ vL : π∗2(α)x[d−1] = x[d−1]}

be the Ellis group. Then F is a subgroup of the group vL. By (5.2), we have that
p ∈ F .

Since F is a group and p ∈ F . We have

(5.3) pFx[d] = Fx[d] ⊂ π−1
2 (x[d−1]).

Since vx[d] ∈ Fx[d], there is some x0 ∈ Fx[d] such that vx[d] = px0. Set xk = pkx0.
Then

xk = pkx0 → px0 = vx[d] = (π∗1(v)x[d−1], x[d−1]), k → ∞,

and
π2(xk) = π2(pkx0) = π∗2(pk)x

[d−1] = ak → x[d−1], k → ∞.

Let xk = (bk, ak) ∈ F [d](x[d]). Then limk bk = π∗1(v)x[d−1].
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By (5.1), we have (T [d−1])nkak → w, k → ∞. Hence

(5.4) (id[d−1] × T [d−1])nk(bk, ak) = (bk, (T
[d−1])nkak) → (π∗1(v)x[d−1],w), k → ∞.

Since id[d−1] × T [d−1] = T
[d]
d ∈ F [d] and (bk, ak) ∈ F [d](x[d]), we have

(5.5) (π∗1(v)x[d−1],w) ∈ F [d](x[d]).

Since (x[d−1],w) is F [d] minimal by assumption, by Proposition A.2 there is some
minimal idempotent u ∈ J(L) such that

u(x[d−1],w) = (π∗1(u)x[d−1], π∗2(u)w) = (x[d−1],w).

Since u, v ∈ L are minimal idempotents in the same minimal left ideal L, we have
uv = u by Proposition A.1. Thus

u(π∗1(v)x[d−1],w) = (π∗1(u)π∗1(v)x[d−1], π∗2(u)w)

= (π∗1(uv)x[d−1],w) = (π∗1(u)x[d−1],w) = (x[d−1],w).

By (5.5), we have

(x[d−1],w) ∈ F [d](x[d]).

The proof is completed. �

5.2. Proof of Theorem 3.1-(2). Let (X, T ) be a system and x ∈ X. Recall

Q[d][x] = {z ∈ Q[d](X) : z∅ = x}.

With the help of Lemma 5.1 we have

Proposition 5.2. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. If
x ∈ Q[d][x], then

x[d] ∈ F [d](x).

Especially, (F [d](x[d]),F [d]) is the unique F [d]-minimal subset in Q[d][x].

Proof. It is sufficient to show the following claim:

S(d): If x ∈ Q[d][x], then there exists a sequence Fk ∈ F [d] such that Fk(x) → x[d].

The case S(1) is trivial. To make the idea clearer, we show the case when d = 2.
Let (x, a, b, c) ∈ Q[2](X). We may assume that (x, a, b, c) is F [2]-minimal, or we
replace it by some F [2]-minimal point in its F [2] orbit closure. Since (X, T ) is
minimal, there is a sequence {nk} ⊂ Z such that T nka → x. Without loss of
generality we assume T nkc → c′. Then we have

(T
[2]
1 )nk(x, a, b, c) = (id × T × id × T )nk(x, a, b, c) → (x, x, b, c′), k → ∞.

Since (x, a, b, c) is F [2]-minimal, (x, x, b, c′) is also F [2]-minimal. By Lemma 5.1,

(x, x, b, c′) ∈ F [2](x[2]). Together with id × T × id × T = T
[2]
1 ∈ F [2] and the

minimality of the system (F [2](x[2]),F [2]) (Theorem 3.1-(1)), it is easy to see there
exists a sequence Fk ∈ F [2] such that Fk(x, a, b, c) → x[2]. Hence we have S(2).

Now we assume S(d) holds for d ≥ 1. Let x ∈ Q[d+1][x]. We may assume that x
is F [d+1]-minimal, or we replace it by some F [d+1]-minimal point in its F [d+1]-orbit
closure. Let x = (x′,x′′), where x′,x′′ ∈ X [d]. Then x′ ∈ Q[d][x]. By S(d), there is
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a sequence Fk ∈ F [d] such that Fkx
′ → x[d]. Without loss of generality, we assume

that Fkx
′′ → w, k → ∞. Then

(Fk × Fk)x = (Fk × Fk)(x
′,x′′) → (x[d],w) ∈ Q[d+1](X), k → ∞.

Since Fk × Fk ∈ F [d+1] and x is F [d+1]-minimal, (x[d],w) is also F [d+1]-minimal. By

Lemma 5.1, (x[d],w) ∈ F [d+1](x[d+1]). Since (F [d+1](x[d+1]),F [d+1]) is minimal by
Theorem 3.1-(1), we have x[d+1] is in the F [d+1]-orbit closure of x. Hence we have
S(d+1), and the proof of claim is completed.

Since x[d] ∈ F [d](x)) for all x ∈ Q[d][x] and (F [d](x[d]),F [d]) is minimal, it is easy

to see that (F [d](x[d]),F [d]) intersects all F [d]-minimal sets in Q[d][x] and hence it is
the unique F [d]-minimal set in Q[d][x]. The proof is completed. �

6. Lifting RP[d] from factors to extensions

In this section, first we give some equivalent conditions for RP[d], and give the
proof of Theorem 3.8-(2), i.e. lifting RP[d] from factors to extensions.

6.1. Equivalent conditions for RP[d]. In this subsection we collect some equiv-
alent conditions for RP[d].

Proposition 6.1. Let (X, T ) be a minimal system and d ∈ N. Then the following
conditions are equivalent:

(1) (x, y) ∈ RP[d];

(2) (x, y, y, . . . , y) = (x, y
[d+1]
∗ ) ∈ F [d+1](x[d+1]);

(3) (x, x
[d]
∗ , y, x

[d]
∗ ) ∈ F [d+1](x[d+1]).

Proof. By Theorem 3.2, we have (1) ⇔ (2). By Lemma 2.6 we have (3) ⇒ (1). Now
show (2) ⇒ (3).

We show it by induction on d. When d = 1, it is easy to see that (2) and (3) are
equivalent. Now assume that (2) ⇒ (3) for d − 1.

If (2) holds for d, then (x, y, y, . . . , y) = (x, y
[d+1]
∗ ) ∈ F [d+1](x[d+1]). Thus (x, y) ∈

RP[d] by Lemma 2.6. Since (x, y) ∈ RP[d] ⊂ RP[d−1], (x, y
[d]
∗ ) ∈ F [d](x[d]). By

Theorem 3.1, (F [d](x[d]),F [d]) is minimal. There is some sequence Fk ∈ F [d] such

that Fk(x, y
[d]
∗ ) → x[d], k → ∞. Then

Fk × Fk(x, y[d]
∗ , y, y[d]

∗ ) → (x, x[d]
∗ , y, x[d]

∗ ), k → ∞.

Thus we have (3) for d. The proof is completed. �

Lemma 6.2. Let (X, T ) be a minimal system. Then (x, y) ∈ RP[d](X) if and only
if (x, x, . . . , x, y) ∈ Q[d+1].

Proof. If (x, y) ∈ RP[d], then by Proposition 6.1, we have (x, x
[d]
∗ , y, x

[d]
∗ ) = (x[d], y, x

[d]
∗ )

∈ Q[d+1]. Since Q[d+1] is invariant under the Euclidean permutation of X [d+1], we
have (x, x, . . . , x, y) ∈ Q[d+1].

Conversely, assume that (x, x, . . . , x, y) ∈ Q[d+1]. Since Q[d+1] is invariant under

the Euclidean permutation of X [d+1], we have (x, x
[d]
∗ , y, x

[d]
∗ ) ∈ Q[d+1]. This means

that (x, y) ∈ RP[d] by Lemma 2.6. �
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6.2. Lifting RP[d] from factors to extensions. In this section we will show
Theorem 3.8-(2). First we need a lemma.

Lemma 6.3. Let π : (X, T ) → (Y, T ) be an extension of minimal systems. If
(y1, y2) ∈ P(Y, T ) and x1 ∈ π−1(y1) then there exists x2 ∈ π−1(y1) such that
(x1, x2) ∈ P(X, T ) and π × π(x1, x2) = (y1, y2).

Proof. Since (y1, y2) ∈ P(Y, T ), by Proposition A.3 there is an minimal idempotent
u ∈ E(X, T ) such that uy1 = uy2 = y2. Let x2 = ux1, then π(x2) = uy1 = y2. By
Proposition A.3 (x1, x2) ∈ P(X, T ) and π × π(x1, x2) = (y1, y2). �

Proposition 6.4. Let π : (X, T ) → (Y, T ) be an extension of minimal systems. If

(y1, y2) ∈ RP[d](Y ), then there is (z1, z2) ∈ RP[d](X) such that

π × π(z1, z2) = (y1, y2).

Proof. First we claim that it is sufficient to show the result when (y1, y2) is a minimal
point of (Y × Y, T × T ). As a matter of fact, by Proposition A.3 there is a minimal

point (y′1, y
′
2) ∈ O((y1, y2), T × T ) such that (y′1, y

′
2) is proximal to (y1, y2). Now

(y′1, y
′
2) is minimal and (y′1, y

′
2) ∈ RP[d](Y ). If we have the claim already, then there

is (x′1, x
′
2) ∈ RP[d](X) with π×π(x′1, x

′
2) = (y′1, y

′
2). Since (y1, y

′
1), (y2, y

′
2) ∈ P(Y, T ),

then by Lemma 6.3 there are x1, x2 ∈ X with π × π(x1, x2) = (y1, y2) such that

(x′1, x1), (x′2, x2) ∈ P(X, T ). This implies that (x1, x2) ∈ RP[d](X) by Theorem 3.3.
Hence we have the result for general case.

So we may assume that (y1, y2) is a minimal point of (Y × Y, T × T ). To make
the idea of the proof clearer, we show the case for d = 1 first (see Figure 1). Since

(y1, y2) ∈ RP[1](Y ), by Proposition 6.1 (y1, y1, y2, y1) ∈ F [2](y
[2]
1 ). So there is some

sequence Fk ∈ F [2] such that

Fky
[2]
1 → (y1, y1, y2, y1), k → ∞.

Take a point x1 ∈ π−1(y1). Without loss of generality, we may assume that

Fkx
[2]
1 → (x1, x2, x3, x4), k → ∞.

Then π[2](x1, x2, x3, x4) = (y1, y1, y2, y1). Take {nk} ⊂ Z such that T nkx2 → x1, k →
∞ and assume that T nkx4 → x′4, k → ∞. Then

(id × T × id × T )nk(x1, x2, x3, x4) → (x1, x1, x3, x
′
4), k → ∞.

Since id × T × id × T = T
[2]
1 ∈ F [2], we have (x1, x1, x3, x

′
4) ∈ F [2](x

[2]
1 ). Now take

{mk} ⊂ Z such that Tmkx3 → x1, k → ∞ and assume that Tmkx′4 → x′′4, k → ∞.
Then

(id × id × T × T )mk(x1, x1, x3, x
′
4) → (x1, x1, x1, x

′′
4), k → ∞.

Since id × id × T × T = T
[2]
2 ∈ F [2], we have (x1, x1, x1, x

′′
4) ∈ F [2](x

[2]
1 ). By Lemma

6.2 (x1, x
′′
4) ∈ RP[1](X). Let y3 = π(x′′4). Note that (x1, x

′′
4) ∈ O((x3, x

′
4), T × T ),

and we have (y3, y1) ∈ O((y1, y2), T × T ). Since (y1, y2) is T × T -minimal, there is
a sequence {ak} ⊂ Z such that (T × T )ak(y3, y1) → (y1, y2), k → ∞. Without loss
of generality, we may assume that there are z1, z2 ∈ X such that

(T × T )ak(x′′4, x1) → (z1, z2), k → ∞
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Since (x1, x
′′
4) ∈ RP[1](X) and RP[1](X) is closed and invariant, we have (z1, z2) ∈

O((x′′4, x1), T × T ) ⊂ RP[1](X). Note that

π × π(z1, z2) = lim
k

(T × T )ak(π(x′′4), π(x1)) = lim
k

(T × T )ak(y3, y1) = (y1, y2),

we are done for the case d = 1. For the proof when d = 2, see Figure 2.

y1 y2

x4

x′4

x2

x1 x3

(x1, x2, x3, x4)
↓

(x1, x1, x3, x
′
4)

y1 y2y3

x′4
z1

x1 x3

z2

x′′4

(x1, x1, x3, x
′
4)

↓
(x1, x1, x1, x

′′
4)

Figure 1. The case d = 1

y1 y2

x111

x′111

x011

x′011

x101

x′101

x110

x010

x100

x000 = x1

x001

(x000, x100, x010, x110, x001, x101, x011, x111)

↓
(x1, x1, x1, x1, x001, x

′

101, x
′

011, x
′

111)

y1 y2y3 y4

x001

z2

x1

z1

x′101

x′011

x′111

x′′111

x′′011

x′′′111

(x1, x1, x1, x1, x001, x
′

101, x
′

011, x
′

111)

↓
(x1, x1, x1, x1, x1, x1, x

′′

011, x
′′

111)

↓
(x1, x1, x1, x1, x1, x1, x1, x

′′′

111)

Figure 2. The case d = 2
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The idea of the proof in the general case is the following. For a point x ∈ F [d+1](x1)
we apply face transformations F k

1 such that the first 2d-coordinates of x1 = lim F k
1 x

will be x
[d]
1 . Then apply face transformations F k

2 such that the first 2d + 2d−1-

coordinates of x2 = lim F2x1 will be (x
[d]
1 , x

[d−1]
1 ). Repeating this process we get a

point ((x
[d+1]
1 )∗, x2) ∈ F [d+1](x1) which implies that (x1, x2) ∈ RP[d](X). Then we

use the same idea used in the proof when d = 1, 2 to trace back to find (z1, z2). Here
are the details.

Now let (y1, y2) ∈ RP[d](Y ), then by Proposition 6.1, (y
[d]
1 , y2, (y

[d]
1 )∗) ∈ F [d+1](y

[d+1]
1 ).

So there is some sequence Fk ∈ F [d+1] such that

Fky
[d+1]
1 → (y

[d]
1 , y2, (y

[d]
1 )∗), k → ∞.

Without loss of generality, we may assume that

(6.1) Fkx
[d+1]
1 → x, k → ∞.

Then x∅ = x1 and π[d+1](x) = (y
[d]
1 , y2, (y

[d]
1 )∗).

Let xI = (xǫ : ǫ(d + 1) = 0) ∈ X [d] and xII = (xǫ : ǫ(d + 1) = 1) ∈ X [d]. Then
x = (xI,xII). Note that

π[d](xI) = π[d](x
[d]
1 ) = y

[d]
1 , and π[d](xII) = (y2, (y

[d]
1 )∗).

By Proposition 5.2, there is some sequence F 1
k ∈ F [d] such that

F 1
k (xI) → x

[d]
1 , k → ∞.

We may assume that
F 1

k (xII) → x′II, k → ∞.

Note that π[d](xII) = π[d](x′II) = (y2, (y
[d]
1 )∗).

Let F 1
k = (Sk

ǫ′ : ǫ′ ∈ {0, 1}d). Let H1
k = (Sk

ǫ : ǫ ∈ {0, 1}d+1) ∈ F [d+1] such that

(Sk
ǫ : ǫ ∈ {0, 1}d+1, ǫ(d + 1) = 0) = (Sk

ǫ : ǫ ∈ {0, 1}d+1, ǫ(d + 1) = 1) = F 1
k .

Then

H1
k(x) = F 1

k × F 1
k (xI,xII) → (x

[d]
1 ,x′II) , x1 ∈ F [d+1](x

[d+1]
1 ), k → ∞.

Let y1 = π[d+1](x1). It is easy to see that x1
ǫ = x1 if ǫ(d + 1) = 0. For y1,

y1
{d+1} = y1

00...01 = y2 and y1
ǫ = y1 for all ǫ 6= {d + 1}.

Let x1
I = (xǫ : ǫ ∈ {0, 1}d+1, ǫ(d) = 0) ∈ X [d] and x1

II = (xǫ : ǫ ∈ {0, 1}d+1, ǫ(d) =
1) ∈ X [d]. By Proposition 5.2, there is some sequence F 2

k ∈ F [d] such that

F 2
k (x1

I ) → x
[d]
1 , F 2

k (x1
II) → x1

II

′
, k → ∞

and π[d](x1
II

′
) = (y

[d−1]
1 , y3, (y

[d−1]
1 )∗) for some y3 ∈ Y .

Let F 2
k = (Sk

ǫ′ : ǫ′ ∈ {0, 1}d). Let H2
k = (Sk

ǫ : ǫ ∈ {0, 1}d+1) ∈ F [d+1] such that

(Sk
ǫ : ǫ ∈ {0, 1}d+1, ǫ(d) = 0) = (Sk

ǫ : ǫ ∈ {0, 1}d+1, ǫ(d) = 1) = F 2
k .

Then let
H2

k(x1) → x2 ∈ F [d+1](x
[d+1]
1 ), k → ∞.
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Let y2 = π[d+1](x2). Then H2
k(y1) → y2, k → ∞. From this one has that (y3, y1) ∈

O((y1, y2), T × T ). By the definition of x2,y2, it is easy to see that x2
ǫ = x1 if

ǫ(d + 1) = 0 or ǫ(d) = 0; y2
{d,d+1} = y2

00...011 = y3 and y2
ǫ = y1 for all ǫ 6= {d, d + 1}.

Now assume that we have xj ∈ F [d+1](x
[d+1]
1 ) for 1 ≤ j ≤ d with π[d+1](xj) = yj

such that xj
ǫ = x1 if there exists some k with d − j + 2 ≤ k ≤ d + 1 such that

ǫ(k) = 0; yj
{d−j+2,...,d,d+1} = yj+1 and yj

ǫ = y1 for all ǫ 6= {d− j + 2, . . . , d, d + 1}, and

(yj+1, y1) ∈ O((y1, yj), T × T ).

Let xj
I = (xǫ : ǫ ∈ {0, 1}d+1, ǫ(d − j + 1) = 0) ∈ X [d] and xj

II = (xǫ : ǫ ∈
{0, 1}d−j+1, ǫ(d − j + 1) = 1) ∈ X [d]. By Proposition 5.2, there is some sequence

F j+1
k ∈ F [d] such that

F j+1
k (xj

I) → x
[d]
1 , F j+1

k (xj
II) → xj

II

′
, k → ∞.

Let F j+1
k = (Sk

ǫ′ : ǫ′ ∈ {0, 1}d). Let Hj+1
k = (Sk

ǫ : ǫ ∈ {0, 1}d+1) ∈ F [d+1] such that

(Sk
ǫ : ǫ ∈ {0, 1}d+1, ǫ(d − j + 1) = 0) = (Sk

ǫ : ǫ ∈ {0, 1}d+1, ǫ(d − j + 1) = 1) = F j+1
k .

Then let
Hj+1

k (xj) → xj+1 ∈ F [d+1](x
[d+1]
1 ), k → ∞.

It is easy to see that xj+1
ǫ = x1 if there exists some k with d − j + 1 ≤ k ≤ d + 1

such that ǫ(k) = 0.
Let yj+1 = π[d+1](xj+1). Then yj+1

ǫ = y1 for all ǫ 6= {d−j +1, d−j +2, . . . , d+1},
and denote yj

{d−j+1,d−j+2,...,d+1} = yj+2. Note that H2
k(yj) → yj+1, k → ∞. From

this one has that (yj+2, y1) ∈ O((y1, yj+1), T × T ).

Inductively we get x1, . . . ,xd+1 and y1, . . . ,yd+1 such that for all 1 ≤ j ≤ d + 1

xj ∈ F [d+1](x
[d+1]
1 ) with π[d+1](xj) = yj. And xj

ǫ = x1 if there exists some k with
d − j + 2 ≤ k ≤ d + 1 such that ǫ(k) = 0; yj

{d−j+2,...,d,d+1} = yj+1 and yj
ǫ = y1 for all

ǫ 6= {d − j + 2, . . . , d, d + 1}, and (yj+1, y1) ∈ O((y1, yj), T × T ).
For xd+1, we have that xd+1

ǫ = x1 if there exists some k with 1 ≤ k ≤ d + 1 such
that ǫ(k) = 0. That means there is some x2 ∈ X such that

xd+1 = (x1, x1, . . . , x1, x2) ∈ F [d+1](x
[d+1]
1 ).

By Lemma 6.2, (x1, x2) ∈ RP[d](X). Note that π(x2) = yd+2.

Since (yj+1, y1) ∈ O((y1, yj), T × T ) for all 1 ≤ j ≤ d + 1, we have (yd+2, y1) ∈

O((y1, y2), T × T ) or (y1, yd+2) ∈ O((y1, y2), T × T ). Without loss of generality, we

assume that (y1, yd+2) ∈ O((y1, y2), T × T ). Since (y1, y2) is T × T -minimal, there
is some {nk} ⊂ Z such that (T × T )nk(y1, yd+2) → (y1, y2), k → ∞. Without loss of
generality, we assume that

(T × T )nk(x1, x2) → (z1, z2), k → ∞.

Since RP[d](X) is closed and invariant, we have

(z1, z2) ∈ O((x1, x2), T × T ) ⊂ RP[d](X).

And

π × π(z1, z2) = lim
k

(T × T )nk(π(x1), π(x2)) = lim
k

(T × T )nk(y1, yd+2) = (y1, y2).
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The proof is completed. �

7. A combinatorial consequence and group actions

7.1. A combinatorial consequence. We have the following combinatorial conse-

quence of the fact that (F [d](x[d]),F [d]) is minimal.

Proposition 7.1. Let (X, T ) be a minimal system, x ∈ X and U be an open neigh-
borhood of x. Put S = {n ∈ Z : T nx ∈ U}. Then for each d ≥ 1,

{(n1, . . . , nd) ∈ Z
d : n1ǫ1 + · · · + ndǫd ∈ S, ǫi ∈ {0, 1}, 1 ≤ i ≤ d}

is syndetic.

Proof. This follows by that fact that x[d] is a minimal point under the face action
F [d]. �

To understand S better we show the following proposition which is similar to [24,
Proposition 2.3]. Note that a collection F of subsets of Z is a family if it is upwards,
i.e. A ∈ F and A ⊂ B imply that B ∈ F .

Proposition 7.2. The family of dynamically syndetic subsets is the family generated
by the sets S whose indicator functions 1S are the minimal points of ({0, 1}Z, σ) and
0 ∈ S, where σ is the shift.

Proof. Put Σ = {0, 1}Z. We denote the family generated by the sets containing {0}
whose indicator functions are the minimal points of (Σ, σ) by Fm. Clearly, if 1F is
the indicator function of F then F = N(1F , [1]), where [1] = {s ∈ Σ : s(0) = 1}.
Hence Fm is contained in the family of dynamical syndetic subsets.

On the other hand, let A be a dynamical syndetic subset. Then there exist a
minimal system (X, T ) with metric d, x ∈ X and an open neighborhood V of x such
that A ⊃ N(x, V ) = {n ∈ Z : T nx ∈ V }. It is easy to see that we can shrink V to
an open neighborhood V ′ of x whose boundary is disjoint from the orbit of x.

Then do the classical lifting trick, a la Glasner, Adler etc. Let

Y = {(z, t) ∈ X×Σ : t(i) = 1 implies T iz ∈ cl(V ′) and t(i) = 0 implies T iz ∈ cl(X\V ′)}

Then Y is a T × σ-invariant closed subset of X ×Σ. Since the orbit of x doesn’t
meet the boundary of V ′, there is a unique t ∈ Σ such that (x, t) ∈ Y and t is
the indicator function of N(x, V ′). Take a minimal subset J of (Y, T × σ) with

J ⊂ O((x, t), T × σ) and let πX : J → X be the projective map. Since (X, T ) is
minimal, πX(J) = X. Hence (x, t) ∈ J . Projecting J to Σ we see that t is a minimal
point. Hence A ∈ Fm as A ⊃ N(x, V ′) and t = 1N(x,V ′). �

Remark 7.3. We note that if S is a syndetic subset of Z then S − S ⊃ S1 − S1 for
some dynamically syndetic subset S1.

7.2. Group actions. Let X be a compact metric space and G be an abelian group.

Definition 7.4. Let X be a compact metric space, G be an abelian group actiong
on X and let d ≥ 1 be an integer. A pair (x, y) ∈ X × X ia said to be regionally
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proximal of order d of G-action if for any δ > 0, there exist x′, y′ ∈ X and a vector
n = (n1, . . . , nd) ∈ Gd such that d(x, x′) < δ, d(y, y′) < δ, and

d(T n·ǫx′, T n·ǫy′) < δ for any nonempty ǫ ⊂ [d],

where n · ǫ =
∑

i∈ǫ ni. The set of regionally proximal pairs of order d of G-action is

denoted by RP
[d]
G (X), which is called the regionally proximal relation of order d of

G-action.

A subset S ⊆ G is a central set if there exists a system (X, G), a point x ∈ X and a
minimal point y proximal to x, and a neighborhood Uy of y such that N(x, Uy) ⊂ S.
The notion of IP-set can be defined in this setting too. By the proof of Furstenberg
[11, Proposition 8.10.] we have

Lemma 7.5. Let G be an abelian group. Then any central set is an IP-set.

So we have

Lemma 7.6. If (X, G) is minimal, then P(X) ⊂ RP
[d]
G (X).

At the same time the notions of face group and parallelepiped group can be
defined. So we have the following theorem by our proof

Theorem 7.7. Let (X, G) a minimal system with G being abelian. Then RP
[d]
G (X)

is a closed invariant equivalence relation. So (X/RP
[d]
G (X), G) is distal.

Similar to [22] we may define

Definition 7.8. Let (X, G) a minimal system with G being abelian. We call

(X/RP
[d]
G (X), G) the d-step nilsystem for G-action.

We think that to study the properties of (X/RP
[d]
G (X), G) or more general group

actions will be interesting.

Appendix A. Basic facts about abstract topological dynamics

In this section we recall some basic definitions and results in abstract topological
systems. For more details, see [1, 4, 13, 16, 28, 29].

A.1. Topological transformation groups. A topological dynamical systems is a
triple X = (X, T , Π), where X is a compact T2 space, T is a T2 topological group
and Π : T × X → X is a continuous map such that Π(e, x) = x and Π(s, Π(t, x)) =
Π(st, x). We shall fix T and suppress the action symbol. In lots of literatures, X is
also called a topological transformation group or a flow.

Let (X, T ) be a system and x ∈ X, then O(x, T ) denotes the orbit of x, which
is also denoted by T x. A subset A ⊆ X is called invariant if ta ⊆ A for all
a ∈ A and t ∈ T . When Y ⊆ X is a closed and T -invariant subset of the system
(X, T ) we say that the system (Y, T ) is a subsystem of (X, T ). If (X, T ) and (Y, T )
are two dynamical systems their product system is the system (X × Y, T ), where
t(x, y) = (tx, ty).

A system (X, T ) is called minimal if X contains no proper closed invariant subsets.
(X, T ) is called transitive if every invariant open subset of X is dense. An example
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of an transitive system is a point-transitive system, which is a system with a dense
orbit. It is easy to verify that a system is minimal iff every orbit is dense. The
system (X, T ) is weakly mixing if the product system (X × X, T ) is transitive.

A homomorphism (or extension) of systems π : (X, T ) → (Y, T ) is a continuous
onto map of the phase spaces such that π(tx) = tπ(x) for all t ∈ T , x ∈ X. In this
case one says that (Y, T ) if a factor of (X, T ) and also that (X, T ) is an extension
of (Y, T ). Define

Rπ = {(x1, x2) : π(x1) = π(x2)},

then Y = X/Rπ. For n ∈ N, define

Rn
π = {(x1, x2, . . . , xn) : π(x1) = π(x2) = . . . = π(xn)},

A.2. Enveloping semigroups. Given a system (X, T ) its enveloping semigroup
or Ellis semigroup E(X, T ) is defined as the closure of the set {t : t ∈ T } in XX

(with its compact, usually non-metrizable, pointwise convergence topology). For an
enveloping semigroup, E → E : p 7→ pq and p 7→ tp is continuous for all q ∈ E and
t ∈ T . Note that (XX , T ) is a system and (E(X, T ), T ) is its subsystem.

Let (X, T ), (Y, T ) be systems and π : X → Y be an extension. Then there is
a unique continuous semigroup homomorphism π∗ : E(X, T ) → E(Y, T ) such that
π(px) = π∗(p)π(x) for all x ∈ X, p ∈ E(X, T ). When there is no confusion, we
usually regard the enveloping semigroup of X as acting on Y : pπ(x) = π(px) for
x ∈ X and p ∈ E(X, T ).

A.3. Idempotents and ideals. For a semigroup the element u with u2 = u is called
an idempotent. Ellis-Namakura Theorem says that for any enveloping semigroup E
the set J(E) of idempotents of E is not empty [4]. A non-empty subset I ⊂ E is
a left ideal (resp. right ideal) if it EI ⊆ I (resp. IE ⊆ I). A minimal left ideal is
the left ideal that does not contain any proper left ideal of E. Obviously every left
ideal is a semigroup and every left ideal contains some minimal left ideal.

We can introduce a quasi-order (a reflexive, transitive relation) <L on the set
J(E) by defining v <L u if and only if vu = v. If v <L u and u <L v we say that
u and v are equivalent and write u ∼L v. Similarly, we define <R and ∼R. An
idempotent u ∈ J(E) is minimal if v ∈ J(E) and v <L u implies u <L v. The
following results are well-known [5, 12]: let L be a left ideal of enveloping semigroup
E and u ∈ J(E). Then there is some idempotent v in Lu such that v <R u and
v <L u; an idempotent is minimal if and only if it is contained in some minimal left
ideal.

Minimal left ideals have very rich algebraic properties. For example,

Proposition A.1. Let I be a minimal left ideal, then

(1) I =
⋃

u∈J(I) uI is its partition and every uI is a group with identity u ∈ J(I).

(2) All minimal idempotents in the same left ideal are equivalent to each other,
i.e. for all u, v ∈ J(I), u ∼L v.
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Let (X, T ) be a system and E(X, T ) be its enveloping semigroup. A subset I ⊆
E(X, T ) is a closed left ideal of E(X, T ) iff (I, T ) is a subsystem of (E(X, T ), T ).
And I is a minimal left ideal of E(X, T ) iff (I, T ) is minimal. Let I ⊂ E(X, T ) be
a minimal left ideal. Then for all x ∈ X, Ix = {px : p ∈ I} is a minimal subset of
X. Especially if (X, T ) is minimal itself, then X = Ix for all x ∈ X. It follows that

Proposition A.2. A point x ∈ X is minimal if and only if ux = x for some u ∈ I.

A.4. Universal point transitive system and universal minimal system. For
fixed T , there exists a universal point-transitive system ST = (ST , T ) such that T
can densely and equivariantly be embedded in ST . The multiplication on T can be
extended to a multiplication on ST , then ST is a closed semigroup with continuous
right translations. The universal minimal system M = (M, T ) is isomorphic to
any minimal left ideal in ST and M is a closed semigroup with continuous right
translations. Hence J = J(M) of idempotents in M is nonempty. Moreover, {vM :
v ∈ J} is a partition of M and every vM is a group with unit element v. Sometimes
if there are chances being confusion then we will use MT instead of M.

The sets ST and M act on X as semigroups and ST x = T x, while for a minimal
system (X, T ) we have Mx = T x = X for every x ∈ X. A necessary and sufficient
condition for x to be minimal is that ux = x for some u ∈ J .

A.5. All kinds of extensions. Two points x1 and x2 are called proximal iff

T (x1, x2) ∩ ∆X 6= ∅.

Let UX be the unique uniform structure of X, then

P(X, T ) =
⋂{

T α : α ∈ UX

}

is the collection of proximal pairs in X, the proximal relation.

Proposition A.3. Let (X, T ) be a system. Then

(1) x1, x2 are proximal in (X, T ) iff px1 = px2 for some p ∈ E(X, T ).
(2) If x ∈ X and u is an idempotent in E(X, T ), then (x, ux) ∈ P.

(3) If x ∈ X, then there is an minimal point x′ ∈ O(x, T ) such that (x, x′) ∈ P.
(4) If (X, T ) is minimal, then (x, y) ∈ P if and only if there is some minimal

idempotent u ∈ E(X, T ) such that y = ux.

The extension π : (X, T ) → (Y, T ) is called proximal iff Rπ ⊆ P iff Pπ =
⋂
{T α∩

Rπ : α ∈ UX} = Rπ. π is distal if Pπ = ∆X . π is a highly proximal (HP) extension if
for every closed subset A of X with π(A) = Y , necessarily A = X. It is easy to see
that a HP extension is proximal. In the metric case an extension π : (X, T ) → (Y, T )
of minimal systems is HP iff it is an almost 1-1 extension, that is the set {y ∈ Y :
π−1(y) is a singleton } is a dense Gδ subset of Y .

An extension π : X → Y of systems is called equicontinuous or almost periodic if
for every α ∈ UX there is β ∈ UX such that T α ∩ Rπ ⊆ β.

In the metric case an equicontinuous extension is also called an isometric exten-
sion. The extension π is a weakly mixing extension when (Rπ, T ) as a subsystem of
the product system (X × X, T ) is transitive.
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A.6. Vietoris topology and circle operation. Let 2X be the collection of nonempty
closed subsets of X endowed with the Vietoris topology. Note that a base for the
Vietoris topology on 2X is formed by the sets

< U1, U2, · · · , Un >= {A ∈ 2X : A ⊆
n⋃

i=1

Ui and A ∩ Ui 6= ∅ for every i},

where Ui is open in X. Then (2X , T ) defined by tA = {ta : a ∈ A} is a system again,
and ST acts on 2X too. To avoid ambiguity we denote the action of ST on 2X by the
circle operation as follows. Let p ∈ ST and D ∈ 2X , then define p ◦ D = lim2X tiD
for any net {ti}i in T with ti → p. Moreover

p ◦ D = {x ∈ X : there are di ∈ D with x = lim
i

tidi}

for any net ti → p in ST . We always have pD ⊆ p ◦ D.

A.7. Ellis group. The group of automorphisms of (M, T ), G = Aut(M, T ) can
be identified with any one of the groups uM (u ∈ J) as follows: with α ∈ uM
we associate the automorphism α̂ : (M, T ) → (M, T ) given by right multiplication
α̂(p) = pα, p ∈ M. The group G plays a central role in the algebraic theory. It carries
a natural T1 compact topology, called by Ellis the τ -topology, which is weaker than
the relative topology induced on G = uM as a subset of M.

It is convenient to fix a minimal left ideal M in ST and an idempotent u ∈ M.
As explained above we identify G with uM and for any subset A ⊆ G, τ -topology is
determined by

clτA = u(u ◦ A) = G ∩ (u ◦ A).

Also in this way we can consider the “action” of G on every system (X, T ) via the
action of ST on X. With every minimal system (X, T ) and a point x0 ∈ uX = {x ∈
X : ux = x} we associate a τ -closed subgroup

G(X, x0) = {α ∈ G : αx0 = x0}

the Ellis group of the pointed system (X, x0).
For a homomorphism π : X → Y with π(x0) = y0 we have

G(X, x0) ⊆ G(Y, y0).

It is easy to see that uπ−1(y0) = G(Y, y0)x0.

For a τ -closed subgroup F of G the derived group H(F ) = F ′ is given by:

H(F ) = F ′ =
⋂{

clτO : O is a τ -open neighborhood of u in F
}
.

H(F ) is a τ -closed normal subgroup of F and it is characterized as the smallest
τ -closed subgroup H of F such that F/H is a compact Hausdorff topological group.
In particular, for an abelian T , the topological group G/H(G) is the Bohr compact-
ification of T .
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A.8. Structure of minimal systems. We say that π : (X, T ) → (Y, T ) is a RIC
(relatively incontractible) extension if for every y = py0 ∈ Y , p an element of M,

π−1(y) = p ◦ uπ−1(y0) = p ◦ Fx0,

where F = G(Y, y0). One can show that the extension π : X → Y is RIC if and only
if it is open and for every n ≥ 1 the minimal points are dense in the relation Rn

π.
Note that every distal extension is RIC. It then follows that every distal extension
is open.

We say that a minimal system (X, T ) is a strictly PI system if there is an ordinal η
(which is countable when X is metrizable) and a family of systems {(Wι, wι)}ι≤η such
that (i) W0 is the trivial system, (ii) for every ι < η there exists a homomorphism
φι : Wι+1 → Wι which is either proximal or equicontinuous (isometric when X is
metrizable), (iii) for a limit ordinal ν ≤ η the system Wν is the inverse limit of the
systems {Wι}ι<ν , and (iv) Wη = X. We say that (X, T ) is a PI-system if there

exists a strictly PI system X̃ and a proximal homomorphism θ : X̃ → X.
If in the definition of PI-systems we replace proximal extensions by almost one-to-

one extensions (or by highly proximal extensions in the non-metric case) we get the
notion of HPI systems. If we replace the proximal extensions by trivial extensions
(i.e. we do not allow proximal extensions at all) we have I systems. These notions
can be easily relativized and we then speak about I, HPI, and PI extensions.

Theorem A.4 (Furstenberg). A metric minimal system is distal if and only if it is
an I-system.

Theorem A.5 (Veech). A metric minimal dynamical system is point distal if and
only if it is an HPI-system.

Finally we have the structure theorem for minimal systems, which we will state
in its relative form (Ellis-Glasner-Shapiro [7], Veech [28], and Glasner [13]).

Theorem A.6 (Structure theorem for minimal systems). Given a homomorphism
π : X → Y of minimal dynamical system, there exists an ordinal η (countable when
X is metrizable) and a canonically defined commutative diagram (the canonical PI-
Tower)

X

π

��

X0

θ∗0
oo

π0

��

σ1

  
A

A

A

A

A

A

A

A

X1

θ∗1
oo

π1

��

··· Xν

πν

��

σν+1

""D
D

D

D

D

D

D

D

Xν+1

πν+1

��

θ∗
ν+1

oo ··· Xη = X∞

π∞

��

Y Y0θ0

oo Z1ρ1

oo Y1θ1

oo ··· Yν Zν+1ρν+1

oo Yν+1
θν+1

oo ··· Yη = Y∞

where for each ν ≤ η, πν is RIC, ρν is isometric, θν , θ
∗
ν are proximal and π∞ is

RIC and weakly mixing of all orders. For a limit ordinal ν, Xν , Yν , πν etc. are
the inverse limits (or joins) of Xι, Yι, πι etc. for ι < ν. Thus X∞ is a proximal
extension of X and a RIC weakly mixing extension of the strictly PI-system Y∞.
The homomorphism π∞ is an isomorphism (so that X∞ = Y∞) if and only if X is
a PI-system.
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Appendix B. Proof of Theorem 4.3

First we need the so-called Ellis trick in [13]. Refer to [13, Lemma X.6.1] for the
proof. See [17] for more discussions about weakly mixing extensions. Recall that M
is the universal minimal set.

Lemma B.1 (Ellis trick). Let F be τ closed subgroup of G acting on M by right
multiplication, M × F → M, (p, α) 7→ pα.

(1) there is a minimal idempotent ω ∈ J(M) ∩ F such that ωF is F -minimal.
(2) if V is a open subset of wF , then intτclτ (V ∩ wF ) 6= ∅.

Lemma B.2. Let π : (X, T ) → (Y, T ) be a RIC weakly mixing extension of minimal
systems and u ∈ J(M) be a minimal idempotent. Let x ∈ uX, y = π(x). Then for

all n ≥ 1, any nonempty open subset U of uπ−1(y) and any transitive point x′ =

(x′1, · · · , x′n−1) ∈ Rn−1
π with π(x′j) = y, j = 1, · · · , n−1, we have T ({x′} × U) = Rn

π.

Proof. Note that we have H(F )A = F , where F = G(Y, y), A = G(X, x), since π is
weakly mixing.
Claim:

{ux′} × π−1(y) ⊂ T ({x′} × U).

Proof of The Claim: Set V = {p ∈ F : px ∈ U}. Then V is a nonempty open set

of F and by Ellis trick we have Ṽ = intτclτ (V ∩F ) 6= ∅. By the definition of H(F ),

there exists α ∈ F such that αH(F ) ⊆ clτ Ṽ .
Since F = AH(F ) = H(F )A, we have

T ({x′} × U) ⊇ u ◦ ({x′} × U) ⊇ u ◦ ({x′} × V x)

⊇ {ux′} × u(u ◦ V )x ⊇ {ux′} × u(u ◦ (V ∩ F ))x

= {ux′} × clτ (V ∩ F )x ⊇ {ux′} × clτ Ṽ x

⊇ {ux′} × αH(F )x = {ux′} × αH(F )Ax

= {ux′} × αFx = {ux′} × Fx.

Since π is RIC, we have u ◦ Fx = π−1(y). Hence

T ({x′} × U) ⊇ u ◦ ({ux′} × Fx) = {ux′} × π−1(y).

This ends the proof of the claim.
Now it is easy to see that T ({x′} × U) = Rn

π. Let (x1, x2) ∈ Rn
π, where x1 ∈ Rn−1

π .
Since x′ is a transitive point of Rn−1

π , there exists a p ∈ ST such that px′ = x1. Then
x2 ∈ π−1(py) = p ◦ π−1(y). Thus

(x1, x2) ∈ {px′} × p ◦ π−1(y) ⊆ T ({ux′} × π−1(y)) ⊆ T ({x′} × U).

Thus we have Rn
π = T ({x′} × U). �

Theorem B.3. Let π : (X, T ) → (Y, T ) be a RIC weakly mixing extension of
minimal systems and y ∈ Y . Then for all n ≥ 1, there exists a transitive point
(x1, x2, . . . , xn) of Rn

π with x1, x2, . . . , xn ∈ π−1(y).
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Proof. It is obvious for the case when n = 1. Now assume it is true for n − 1.
Fix a transitive point x′ = (x1, x2, . . . , xn−1) ∈ Rn−1

π with x1, x2, . . . , xn−1 ∈ π−1(y).
Assume that y ∈ uY for some minimal idempotent u ∈ J(M).

For each ǫ > 0, define

Vǫ = {x ∈ uπ−1(y) : T (x′, x) is ǫ-dense in Rn
π}.

It is easy to verify that Vǫ is open. Now we show that Vǫ is dense in uπ−1(y). For

any Λ ⊆ Xn, z ∈ Xn, δ > 0, Λ
δ
∼ z is defined by d(z, z′) < δ, ∀z′ ∈ Λ.

Now let {z1, z2, · · · , zn} be an ǫ-net of Rn
π, i.e. for each z ∈ Rn

π there is some zj

(j ∈ {1, 2, . . . , n}) such that d(z, zj) < ǫ. Let U be an open subset of wπ−1(y). By

Lemma B.2, T ({x′} × U) = Rn
π. So there are some open subset U1 ⊇ U and t1 ∈ T

such that t1({x
′} × U1)

ǫ
∼ z1. Again, by Lemma B.2, T ({x′} × U1) = Rn

π. So there

are an open subset U2 ⊇ U1 and t2 ∈ T such that t2({x
′}×U2)

ǫ
∼ z2. . . . Inductively,

we have a sequence U1 ⊇ U2 ⊇ · · · ⊇ Un (relatively open) and t1, . . . , tn ∈ T such

that tj({x
′} × Un)

ǫ
∼ zj , ∀j ∈ {1, 2, . . . , n}. Hence Un ⊆ Vǫ. This means that Vǫ is

dense in uπ−1(y).

Let Γ =
⋂∞

n=1 V1/n. Then Γ is a residual set of uπ−1(y), and for all x ∈ Γ, we

have T (x′, x) = Rn
π. In particular, there exists a transitive point (x1, x2, . . . , xn) of

Rn
π with x1, x2, . . . , xn ∈ π−1(y). The proof is completed. �
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135 (2007) 367–405.
[24] W. Huang and X. Ye, Dynamical systems disjoint from all minimal systems, Trans. Amer.

Math. Soc., 357(2005), 669-694.
[25] D. C. McMahon, Relativized weak disjointness and relatively invariant measures, Trans.

Amer. Math. Soc., 236 (1978), 225–237.
[26] T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, Er-

god. Th. Dynam. Systems, 28 (2008), no. 2, 657–688.
[27] W. A. Veech, The equicontinuous structure relation for minimal Abelian transformation

groups, Amer. J. Math., 90(1968), 723–732.
[28] W. A. Veech, Topological systems, Bull. Amer. Math. Soc., 83(1977), 775-830.
[29] J. de Vries, Elements of Topological Dynamics, Kluwer Academic Publishers (993), Dor-

drecht.
[30] T. Ziegler, Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc.,

20 (2007), 53–97.

Department of Mathematics, University of Science and Technology of China,
Hefei, Anhui, 230026, P.R. China.

E-mail address : songshao@ustc.edu.cn
E-mail address : yexd@ustc.edu.cn


