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Abstract. A topological dynamical system is n-sensitive, if there is a positive
constant such that in each non-empty open subset there are n distinct points
whose iterates will be apart from the constant at least for a same moment. The
properties of n-sensitivity in minimal systems are investigated. It turns out that a
minimal system is n-sensitive if and only if the n-th regionally proximal relation Qn

contains a point whose coordinates are pairwise distinct. Moreover, the structure
of a minimal system which is n-sensitive but not (n + 1)-sensitive (n ≥ 2) is
determined.

1. Introduction

The complexity of a topological dynamical system (TDS for short) is a centrum
topic of the research since the introducing the term of chaos in 1975 by Li and
Yorke [LY], known as Li-Yorke chaos today. The notion of sensitivity is the kernel
in the definition of chaos in the sense of Devaney, which says roughly that in each
non-empty open subset there are two points whose trajectories are apart from (at
least for one moment) a given positive constant. It is known a transitive system is
either sensitive or almost equicontinuous, and especially a minimal system is either
equicontinuous or sensitive [AAB]. Moreover, a transitive system with a dense set of
minimal points is sensitive [GW], and even a non-minimal Banach-transitive system
is sensitive [HY].

In [AK] Akin and Kolyada introduced a notion called Li-Yorke sensitivity which
is much stronger than sensitivity, and they showed that a weakly mixing TDS is
Li-Yorke sensitive. In [CJ] Cadre and Jacob introduced a notion called pairwise
sensitivity for measure preserving transformations (mpt). Particularly they proved
that a weakly mixing mpt is pairwise sensitive. Recently, Xiong [X] among other
things introduced a new notion called n-sensitivity, which says roughly that that in
each non-empty open subset there are n distinct points who trajectories are apart
from (at least for one moment) a given positive constant pairwisely.
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2 Sensitivity and regionally proximal relation in minimal systems

We aim to study the properties of n-sensitivity, particularly for minimal systems
in this paper. It is proved that a minimal system is n-sensitive if and only if the
n-th regionally proximal relation contains a point whose coordinates are distinct.
Moreover, the structure of a minimal system which is n-sensitive but not n + 1-
sensitive (n ≥ 2) is determined. In fact, such a minimal system is a finite to one
extension of its maximal equicontinuous factor.

2. Preliminary

In the article, integers, nonnegative integers and natural numbers are denoted by
Z, Z+ and N respectively.

By a topological dynamical system (TDS for short) one means a pair (X,T ), where
X is a compact metric space and T : X −→ X is continuous and surjective. Let
orb(x, T ) = {T nx : n = 0, 1, 2, . . .} be the orbit of x. Write (Xn, T ) for the n-fold
product system (X×· · ·×X,T×· · ·×T ), and set ∆n = {(x, x, · · · , x) ∈ Xn : x ∈ X}
and ∆(n) = {(x1, x2, · · · , xn) ∈ Xn : xi = xj for some i 6= j}.

A TDS (X,T ) is transitive if for any two opene (open and non-empty) sets U and
V there is some n ∈ N such that U∩T−nV 6= ∅. It is called pointed transitive if there
exists some x0 ∈ X such that orb(x0, T ) = X. Such x0 is called a transitive point.
It is easy to see that in our setting these two notions are the same and in fact the
collection of transitive points forms a dense Gδ set in X. (X,T ) is weakly mixing if

the product system (X2, T ) is transitive. A TDS (X,T ) is minimal if orb(x, T ) = X
for every x ∈ X, i.e. every point is transitive. A point x is called minimal or almost
periodic if the subsystem (orb(x, T ), T ) is minimal.

When (X,T ) and (Y, T ) are TDSs and π : X → Y is a continuous onto map
which intertwines the actions, one says that (Y, T ) is a factor of the system (X,T )
and (X,T ) is an extension of (Y, T ).

A TDS (X,T ) is equicontinuous for every ε > 0 there exists δ > 0 such that
d(x1, x2) < δ implies d(T nx1, T

nx2) < ε for every n ∈ N. A TDS (X,T ) is called
distal if inf

n∈N
d(T nx, T nx′) > 0 whenever x, x′ ∈ X are distinct.

A pair (x1, x2) ∈ X2 in (X,T ) is called proximal if there exists a sequence {ni}
such that d(T nix1, T

nix2) → ∆2. The subset P (X,T ) of X2 consisting of all proximal
pairs is called the proximal relation of (X,T ). It is easy to see

P (X,T ) =
∞⋂

k=1

∞⋃
n=1

T−n∆(1/k),

where ∆(ε) = {(x, y) ∈ X2 : d(x, y) < ε}. The regionally proximal relation on X is
defined by

Q(X,T ) =
∞⋂

k=1

∞⋃
n=1

T−n∆(1/k).
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It is clear that (x, x′) ∈ Q(X,T ) iff there are {xi}, {x′i} in X and {ni} ⊂ N with
(xi, x

′
i) → (x, x′) and T ni(xi, x

′
i) → ∆2. It is easy to show that (X,T ) is equicontin-

uous iff Q(X,T ) = ∆2 and (X,T ) is distal iff P (X,T ) = ∆2.

3. n-sensitivity and total sensitivity

In this section we shall define and discuss the basic properties of n-sensitivity.
Moreover, for a minimal system, a characterization of n-sensitivity will be given.
We start with some definitions.

A TDS (X,T ) is sensitive dependence on initial conditions, or sensitive for short,
if there exists an ε > 0 such that for all x ∈ X and any neighborhood U of x there are
some y ∈ U and n ∈ N with d(T nx, T ny) > ε. A TDS (X,T ) which is not sensitive
is called almost equicontinuous, i.e. there is some equicontinuous point: there exists
x ∈ X with the property that for any ε > 0 there is a δ > 0 such that whenever
y ∈ X satisfies d(x, y) < δ then d(T nx, T ny) < ε for all n ∈ N. It is known for a
transitive almost equicontinuous system, the set of equicontinuous points coincides
with the set of transitive points [AAB].

Definition 3.1. For a given integer n ≥ 2 a system (X,T ) is said to be n-sensitive
if there exists an ε > 0 such that for any opene set U there are distinct points
x1, x2, · · · , xn ∈ U and some m ∈ N with

min{d(Tmxi, T
mxj) : 1 ≤ i 6= j ≤ n} ≥ ε.

Such an ε > 0 is called an n-sensitive constant of (X,T ).

Note that 2-sensitivity is nothing but the sensitivity. Moreover, for any given
n ≥ 2, there exists a minimal system which is n-sensitive but not n + 1-sensitive.
An example will be presented at the end of the section after a characterization of
n-sensitivity for a minimal TDS is given.

As a non-weakly mixing minimal system has a non-trivial equicontinuous fac-
tor, the factors of an n-sensitive system need not be n-sensitive. However, the
n-sensitivity can be lifted up by a semi-open factor map (a map is semi-open if the
image of an opene subset contains an opene subset).

Proposition 3.2. Let (X,T ) and (Y, T ) be TDS and π : X → Y be semi-open. If
(Y, T ) is n-sensitive for some n ≥ 2, so is (X,T ).

Proof. Let ε′ > 0 be an n-sensitive constant for (Y, S). The continuity of T implies
that if d(y1, y2) ≥ ε′ and π(xi) = yi then d(x1, x2) ≥ ε for some ε > 0.

Let U be an opene subset of X. As π is semi-open, π(U) contains an opene
subset V . Thus, there are distinct points y1, . . . , yn in Y and m ∈ N such that
min{d(Tmyi, T

myj) : 1 ≤ i 6= j ≤ n} ≥ ε′. Let x1, . . . , xn ∈ X with π(xi) = yi,
1 ≤ i ≤ n. Then min{d(Tmxi, T

mxj) : 1 ≤ i 6= j ≤ n} ≥ ε, i.e. (X,T ) is
n-sensitive. ¤
Definition 3.3. (X,T ) is totally sensitive, if (X,T ) is n-sensitive for every n ≥ 2.
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It is easy to see that any weakly mixing system is totally sensitive. One has the
following observation.

Proposition 3.4. Let (X,T ) be a TDS and X be locally connected. If (X,T ) is
sensitive, then it is totally sensitive.

Proof. Let ε > 0 be a sensitive constant, U be an opene subset of X and n ≥
3 be fixed. As X is locally connected, there is a connected opene subset V ⊂
U . By the sensitivity of (X,T ), there are x, x′ ∈ V and m ∈ N such that d0 =
d(Tm(x), Tm(x′)) ≥ ε.

Let f : TmV −→ R with f(y) = d(Tmx, y). As f is continuous and TmV is
connected, f(Tmx) = 0 and f(Tmx′) = d0, we have f(TmV ) ⊃ [0, d0]. So there are
n distinct points x′1 = Tmx, x′2, . . . , x

′
n−1, x

′
n = Tmx′ ∈ TmV such that d(x′1, x

′
i) =

i−1
n−1

d0 for each i = 1, 2, . . . , n. Take x1 = x, x2, . . . , xn−1, xn = x′ ∈ V with Tmxi = x′i
we have min{d(Tmxi, T

mxj) : 1 ≤ i 6= j ≤ n} ≥ ε
n−1

. This implies that (X,T ) is
n-sensitive and hence totally sensitive. ¤
Definition 3.5. Let (X,T ) be a TDS and x1, · · · , xn ∈ X. The tuple (x1, · · · , xn)
is n-regionally proximal if there are xn

i → xi, i = 1, 2, · · · , n and {ni} ⊂ N such that

T ni(xn
1 , x

n
2 , · · · , xn

n) → ∆n.

Denote the set of all n-regionally proximal tuples by Q+
n (X,T ).

It is easy to see

Q+
n (X,T ) =

⋂
{
∞⋃

m=1

T−mα : α is a neighborhood of the diagonal in Xn}.

Hence it is a closed invariant set of Xn. When the map T is a homeomorphism,
let Q−

n (X,T ) = Q+
n (X,T−1) and Qn(X,T ) = Q+

n (X,T ) ∪ Q−
n (X,T ). It is not

difficulty to check that Qn(X,T ) = Q+
n (X,T ) = Q−

n (X,T ) when T is a minimal
homeomorphism.

For a TDS (X,T ), x ∈ X is a recurrent point if there is strictly increasing sequence
{ni} such that T nix −→ x. For a transitive TDS (X,T ) if x is a transitive point
then for each n, the subset

{(T k1x, . . . , T knx) : (k1, . . . , kn) ∈ Zn
+}

is dense in Xn, thus the set of recurrent points in Xn is dense in Xn.
For a minimal TDS we have the following characterization of n-sensitivity.

Theorem 3.6. Let (X,T ) be a transitive TDS and n ≥ 2 be given. If (X,T ) is
n-sensitive, then Q+

n (X,T ) \ ∆(n) 6= ∅, and if in addition (X,T ) is minimal the
converse holds.

Proof. First assume that (X,T ) is n-sensitive. Let Um be an open subset of X with
diam(Um) < 1

m
for each m ∈ N. Then there is ε > 0 such that for each m there is a

recurrent point (xm
1 , . . . , xm

n ) ∈ Um×· · ·×Um and tm ∈ N with d(T tmxm
i , T tmxm

j ) > ε



S. Shao, X.D. Ye and R.F. Zhang 5

when i 6= j. Without loss of generality assume that T tmxm
i −→ xi, i = 1, . . . , n.

Thus it is clear that x1, . . . , xn are distinct and (x1, . . . , xn) ∈ Q+
n (X,T ).

Now assume that (X,T ) is minimal and Q+
n (X,T )\∆(n) 6= ∅ and (x1, x2, · · · , xn) ∈

Q+
n (X,T ) \ ∆(n). As x1, x2, · · · , xn are distinct, there are disjoint closed neighbor-

hoods Ai of xi, i = 1, . . . , n. Put δ = min{d(Ai, Aj) : i 6= j}.
Let U be an opene subset of X. By minimality there is n0 ∈ N with

⋃n0

i=0 T−iU =
X. Let δ′ be a Lebesgue number for the open cover U, T−1U, . . . , T−n0U . By the
definition there are x′i ∈ Ai and n1 ∈ N with

max
1≤i<j≤n

{d(T n1x′i, T
n1x′j)} < δ′.

Thus there exists i0 with {T n1x′1, . . . , T
n1x′n} ⊂ T−i0U for some 0 ≤ i0 ≤ n0. We may

assume that (x′1, . . . , x
′
n) is a recurrent point. It is clear that yi = T n1+i0(x′i) ∈ U

for each i = 1, . . . , n. As (x′1, . . . , x
′
n) is a recurrent point, there is n2 such that

T n2yi ∈ Ai, i = 1, . . . , n. It is clear that

d(T n2yi, T
n2yj) ≥ d(Ai, Aj) ≥ δ,

when i 6= j. Thus, (X,T ) is n-sensitive. ¤
We have the following remark.

Remark 3.7. The converse is not true without the assumption of minimality. For
example, let (X,T ) be a transitive almost equicontinuous system with a unique
minimal point which is a fixed point [AAB]. Then one has Q+

2 (X,T ) = X2, but
(X,T ) is not 2-sensitive.

Now we ready to give the example promised at the beginning of the section.

Example 3.8. There exists an n-sensitive but not (n+1)-sensitive minimal system
for any n ≥ 2.

Proof. Let π : (X,T ) → (Y, T ) be an asymptotic extension of minimal systems,
where Y is equicontinuous. If max{Card π−1(y) : y ∈ Y } = n, then Qn(X,T ) =
{(x1, x2, · · · , xn) : xi ∈ π−1(y) with cardinality n} and Qn+1(X,T ) \ ∆(n+1) = ∅.
That is, (X,T ) is an n-sensitive but not (n + 1)-sensitive. One can get such an
(X,T ) by a substitution of length n over two symbols {0, 1}. For example, let
S = {0, 1, · · · , n − 1} and θ : S −→ S3 with 0 −→ 010, 1 −→ 020, 2 −→ 030, · · · ,
n − 1 −→ 000. Then the substitution minimal system decided by θ satisfies the
condition. See [S] for details. ¤

4. The structure of a non-totally sensitive minimal system and
applications

In this section we will determine the structure of a minimal system which is
not totally sensitive (i.e. there is some n ≥ 2 such that it is n-sensitive but not
(n+1)-sensitive). Recall that if a minimal system (X,T ) is invertible, then we have
Qn(X,T ) = Q+

n (X,T ) = Q−
n (X,T ).
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For a minimal system (X,T ), let (X̃, T̃ ) be the natural extension of (X,T ), i.e.

X̃ = {(x1, x2, . . .) ∈
∏∞

i=1 X : T (xi+1) = xi, i ∈ N} (as the subspace of the product

space) and T̃ (x1, x2, . . .) = (T (x1), x1, x2, . . .). It is clear that T̃ : X̃ −→ X̃ is a

homeomorphism and π1 : X̃ → X is semi-open [KST], where π1 is the projection to
the first coordinate.

To prove our main theorem we need a result from [MS].

Lemma 4.1. [MS] Let (X,T ) be an invertible minimal system and x1, . . . , xn ∈
X. If (x1, . . . , xn) is minimal and (xi, xi+1) ∈ Q(X,T ) for 1 ≤ i ≤ n − 1, then
(x1, . . . , xn) ∈ Qn(X,T ).

The proof of the above theorem needs the tool of enveloping semigroup associated
with a TDS. Given a TDS (X,T ) its enveloping semigroup E(X,T ) is defined as
the closure of the set {T n : n = 0, 1, . . .} in XX (with its compact, usually non-
metrizable, pointwise convergence topology). If u ∈ E(X,T ) with u2 = u, then
u is called an idempotent. A left ideal in E(X,T ) is a non-empty subset I with
E(X,T )I ⊂ I. A minimal left ideal is one which does not properly contain a left
ideal. An idempotent in a minimal left ideal is said to be a minimal idempotent.
It is known that x ∈ X is a minimal point if and only if ux = x for some minimal
idempotent u [Au]. Using this result we can prove

Theorem 4.2. Let (X,T ) be an invertible minimal system. If (X,T ) is n-sensitive
but not (n + 1)-sensitive for some n ≥ 2, then it is a finite to one extension of its
maximal equicontinuous factor. Moreover, the maximal cardinality of the fibre of
this extension is less than n2 + 1.

Conversely, if π : X −→ Xeq is the factor map to the maximal equicontinuous fac-
tor of (X,T ) and maxx∈Xeq Card(π−1x) < ∞, then (X,T ) is either equicontinuous
or n-sensitive not n + 1-sensitive for some n ≥ 2.

Proof. First let (X,T ) be a minimal system which is n-sensitive but not n + 1-
sensitive for some n ≥ 2. Let π : (X,T ) → (Xeq, T ) be the maximal equicontinuous
factor. Since Q(X,T ) is an equivalence relation [Au] and (Xeq, T ) is the factor
induced by Q(X,T ), Q(X,T ) = Rπ =

⋃
y∈Y π−1y × π−1y.

Let u be a minimal idempotent and y ∈ Xeq. If Card(uπ−1(y)) > n, then there
are distinct x1, . . . , xn+1 ∈ uπ−1(y). It is clear that (x1, . . . , xn+1) is a minimal
point and (xi, xi+1) ∈ Q(X,T ) for 1 ≤ i ≤ n. By Lemma 4.1, (x1, . . . , xn+1) ∈
Qn+1(X,T ) \ ∆(n+1). By Theorem 3.6 (X,T ) is (n + 1)-sensitive, a contradiction!
Thus one has Card(uπ−1(y)) ≤ n.

Now we show Card(π−1(y)) ≤ n2. If this is not the case, then there is X0 ⊆ π−1(y)
such that Card(X0) = n + 1 and u(X0) is a singleton. Let X0 = {x1, x2, · · · , xn+1},
then it is clear that (x1, x2, · · · , xn+1) is in Qn+1(X,T ) \ ∆(n+1) by the definition.
Again by Theorem 3.6, (X,T ) is (n+1)-sensitive, a contradiction! Hence π is a finite
to one extension of its maximal equicontinuous factor, and the maximal cardinality
of the fibre of this extension is less than n2 + 1.
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The other statement of the theorem follows directly from Theorem 3.6. ¤
Now we are going to extend the result for any minimal TDS. We need the following

lemma.

Lemma 4.3. Let (X,T ) be a minimal TDS and (X̃, T̃ ) be its natural extension.

Then (X,T ) is not totally sensitive if and only if (X̃, T̃ ) is not totally sensitive.

Proof. Note that (X̃, T̃ ) is minimal, and (X,T ) is equicontinuous if and only if

(X̃, T̃ ) is equicontinuous.
Assume that (X,T ) is not totally sensitive. If (X,T ) is equicontinuous, so is

(X̃, T̃ ). So we assume that (X,T ) is n-sensitive, but not (n + 1)-sensitive for some
n ≥ 2. Let

m = max
x∈X

Card(π−1
1 x) = max

x∈X
max
i∈N

Card(T−i(x)).

We claim that m ≤ n. Otherwise, there are x ∈ X and t ∈ N with Card(T−t(x)) ≥
n+1. Let T−t(x) = {y1, . . . , yk′} with k′ ≥ n+1. Then it is clear that (y1, . . . , yk′) ∈
Qk′(X,T ), and thus by Theorem 4.2 (X,T ) is n+1-sensitive, a contradiction. Hence
we have m ≤ n

If (X̃, T̃ ) is nm + 1-sensitive, then there are (x̃1, . . . , x̃nm+1) ∈ Qnm+1(X̃, T̃ ) \
∆(nm+1) by Theorem 3.6. It is clear that (π1x̃1, . . . , π1x̃nm+1) ∈ Qnm+1(X,T ). Since
the cardinality of {π1x̃1, . . . , π1x̃nm+1} is larger than n, this implies that (X,T ) is

n + 1-sensitive by Theorem 3.6, a contradiction. So (X̃, T̃ ) is not totally sensitive.

Now assume that (X̃, T̃ ) is not totally sensitive. It is clear by Proposition 3.2
that (X,T ) is not totally sensitive, since π1 is semi-open. ¤

With the above preparation now we can show the main result of the section.

Theorem 4.4. Let (X,T ) be a minimal system. If (X,T ) is n-sensitive but not
(n + 1)-sensitive for some n ≥ 2, then it is a finite to one extension of its max-
imal equicontinuous factor. Moreover, the maximal cardinality of the fibre of this
extension is less than n4 + 1.

Conversely, if π : X −→ Xeq is the factor map to the maximal equicontinuous
factor of (X,T ) and supx∈Xeq

Card(π−1x) < ℵ0, then (X,T ) is either equicontinuous
or n-sensitive not n + 1-sensitive for some n ≥ 2.

Proof. Assume that (X,T ) is a minimal TDS. Let (X̃, T̃ ) be the natural extension

of (X,T ), then π1 : X̃ → X is semi-open [KST], where π1 is the projection to the

first coordinate. By Lemma 4.3, (X̃, T̃ ) is not totally sensitive. If π̃ : X̃ −→ X̃eq

is the factor map to the maximal equicontinuous factor, then X̃eq is induced by the

equivalence relation Q̃(X̃, T̃ ).

Define π : X −→ X̃eq such that for each x ∈ X, π(x) = π̃(x′), where x′ ∈ π−1
1 x.

If x′, x′′ ∈ π−1
1 x, then it is easy to see (x′, x′′) ∈ Q̃(X̃, T̃ ). Thus π is well-defined.

Moreover, it is easy to check that π is continuous and onto, and is a factor map.

This implies that X̃eq is the maximal equicontinuous factor of (X,T ), since a factor
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of (X,T ) is also a factor of (X̃, T̃ ). By the proof of Lemma 4.3, we know that

m = maxx∈X Card(π−1
1 (x)) ≤ n and (X̃, T̃ ) is not nm + 1-sensitive, and hence is

not n2 + 1-sensitive. Then by Theorem 4.2, maxx∈X̃eq
Card(π̃−1(x)) ≤ n4. So we

have maxx∈X̃eq
Card(π−1(x)) ≤ n4, since π̃ = π ◦ π1. ¤

By Theorem 4.4 we have the following characterization of total sensitivity.

Theorem 4.5. Let (X,T ) be a minimal TDS and π : X −→ Xeq be the factor map
to the maximal equicontinuous factor of (X,T ). Then (X,T ) is totally sensitive if
and only if supx∈Xeq

Card(π−1x) ≥ ℵ0.

In the spirit of Lemma 4.3 and Theorem 4.4, in the rest of this section we assume
that the system considered is invertible for convenience.

Let π : (X,T ) −→ (Y, T ) be a factor map. π is an almost one to one extension if
there exists a dense Gδ set X0 ⊆ X such that π−1({π(x)}) = {x} for any x ∈ X0. π is
said to be an isometric extension or equicontinuous extension if for each ε > 0 there
is δ > 0 such that if π(x1) = π(x2) and d(x1, x2) < δ then d(T n(x1), T

n(x2)) < ε for
all n ∈ N. A minimal TDS is a HPI-flow if its some almost one to one extension is an
inverse limit space by almost one to one or isometric extensions. A point x is called
a distal point if there is no other point in its orbit closure which is proximal to it. A
TDS (X,T ) with some distal point whose orbit is dense in X is called a point-distal
system. The Veech Structure Theorem said a minimal system is point-distal if and
only if it is HPI [Au].

Given a factor map π : X → Y between minimal systems (X,T ) and (Y, S) there
exists a commutative diagram of factor maps (called O-diagram)

X
σ∗←−−− X∗

yπ

yπ∗

Y
τ∗←−−− Y ∗

such that
(a) σ∗ and τ ∗ are almost one to one extensions; (b) π∗ is an open extension (i.e. it
is open as a map); (c) X∗ is the unique minimal set in Rπτ∗ = {(x, y) ∈ X × Y ∗ :
π(x) = τ ∗(y)} and σ∗ and π∗ are the restrictions to X∗ of the projections of X ×Y ∗

onto X and Y ∗ respectively. We sketch the construction of these factors. Let (M,Z)
be the universal minimal action defined from Z. The set M is a closed semigroup
with continuous right translations, isomorphic to any minimal left ideal in βZ, the
Stone − C̆ech compactification of Z. Let 2X be the collection of nonempty closed
subsets of X endowed with the Hausdorff topology. Then T : 2X → 2X , A 7→ TA
define a TDS (2X , T ). To avoid ambiguities one denotes the action of βZ on 2X by
the circle operation as follows: let p ∈ βZ and A ∈ 2X , then define p ◦A = lim

λ
mλA

for any net {mλ}λ∈Λ converging to p. Let x ∈ X, u idempotent with ux = x and
y = π(x). Let y∗ = u ◦ π−1({y}) and define Y ∗ = {p ◦ y∗ : p ∈ M} as the orbit
closure of y∗ in 2X ; one has that y∗ is a minimal point so Y ∗ is minimal. Finally
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X∗ = {(px, p ◦ y∗) ∈ X × Y ∗ : p ∈ M}, τ ∗(p ◦ y∗) = py and σ∗((px, p ◦ y∗)) = px. It
can be proved that X∗ = {(x̃, ỹ) ∈ X × Y ∗ : x̃ ∈ ỹ}. See [Au] for details.

Combining Theorem 4.2 with the construction of O-diagram, an immediate con-
sequence is

Corollary 4.6. Let (X,T ) be a minimal system which is n-sensitive but not (n+1)-
sensitive for some n ≥ 2. Then (X,T ) is HPI.

Proof. Now we consider the O-diagram of π : X → Xeq:

X
σ∗←−−− X∗

yπ

yπ∗

Xeq
τ∗←−−− Xeq

∗

Let x ∈ X, u idempotent with ux = x and y = π(x). By the proof of Theorem
4.2, π−1({y}) is less than n2 + 1 and y∗ = u ◦ π−1({y}) = uπ−1({y}) is less than
n + 1. So π∗ is an isometric extension and every fibre has the same cardinality with
y∗ which is less than n + 1. It is easy to verify that any finite to one open extension
is isometric (or see [MS] for a proof). Hence π∗ is isometric. By the definition of
HPI, (X,T ) is an HPI system. ¤

For a TDS (X,T ) let hs(X,T ) = supA hA(X,T ), where A ranges over all infinite
sequences and hA(X,T ) is the sequence entropy with respect to A (see [Go] for
details). It is known that if (X,T ) has positive entropy then hs(X,T ) = ∞, and
generally hs(X,T ) = log k for some k = N ∪ {∞} [HY1].

Now we can give some conditions implying total sensitivity.

Corollary 4.7. Let (X,T ) be a minimal system. If it satisfies one of the following
conditions, then it is totally sensitive.

(1) infinite sequence entropy;
(2) distal but not equicontinuous;
(3) not point-distal, i.e. not HPI.

Proof. (1). Let (X,T ) be a minimal TDS and π : (X,T ) → (Xeq, T ) be the maxi-
mal equicontinuous factor. If (X,T ) is not totally sensitive, then by Theorem 4.2
maxy∈Xeq Card(π−1(y)) ≤ n2 for some n ∈ N. This implies that for a given sequence
A

hA(X,T ) ≤ hA(Xeq, T ) + log n2 = 2 log n

by a well known result in [Go], a contradiction.
(2). The following theorem was proved by Sacker and Sell [SS]: Let π : (X,T ) →

(Y, T ) be an extension of distal minimal systems. If there is some y0 ∈ Y with
Card π−1(y0) = N , then (X,T ) is equicontinuous iff (Y, T ) is. Thus the result
follows by this fact and Theorem 4.2.

(3). It follows from Corollary 4.6. ¤
Concerning isometric extensions, we have the following remark.



10 Sensitivity and regionally proximal relation in minimal systems

Example 4.8. Let T and T2 be the one and two dimensional torus respectively.
Define T : T2 −→ T2 such that T (z, w) = (αz, zw), and Tα : T −→ T with
Tα(z) = αz, where α is not a root of the unit. Then, (T2, T ) is minimal, distal and
not equicontinuous [Au, p.75]. Let π : T2 −→ T with π(z, w) = z. Then π is an
isometric extension. As (T2, T ) is not equicontinuous, (T2, T ) is sensitive and hence
totally sensitive by Proposition 3.4. Since (T, Tα) is equicontinuous, an isometric
extension can not keep n-sensitivity.
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