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Abstract Let T be a star and Ω(f) be the set of non-wandering points of
a continuous map f : T −→ T . For two distinct prime numbers p and q,
we prove: (1) Ω(fp) ∪ Ω(f q) = Ω(f) for each f ∈ C(T, T ) if and only if
pq > End(T ), (2) Ω(fp) ∩ Ω(f q) = Ω(fpq) for each f ∈ C(T, T ) if and only if
p + q ≥ End(T ), where End(T ) is the number of the ends of T . Using (1)-(2)
and the results in [3], we obtain a complete description of non-wandering sets
of the powers of maps of 3-star and 4-star.

1 Introduction
In the study of the dynamics of a continuous map f : X −→ X of a compact metric

space X into itself, a central role is played by the various recursive properties of the
points of X([1][4][5]). One of the important such properties is non-wanderingness. It is
easy to show that the non-wandering set Ω(f) is a non-empty closed invariant subset
of X, but generally Ω(f) = Ω(fn), n ∈ N does not hold. So, it is important to know
the interrelations of Ω(fn), n ∈ N.

Coven and Nitecki discussed non-wandering sets of the powers of continuous maps
of a compact interval in [2]. For a continuous map f : I −→ I of the interval, they
proved:

(1) If there is some n ≥ 2 such that x ∈ Ω(f) \Ω(fn), then Orb(x, f) is finite and the
topological entropy h(f) > 0.

(2) Ω(f) = Ω(fn) whenever n is odd.

Wen Huang and Xiangdong Ye generalized the above results from a compact interval
to a tree [3], and the method they used is different from [2]. More precisely, they showed:

1. Let f : T −→ T be a continuous map of a tree T . If there is some n ≥ 2 such that
x ∈ Ω(f) \ Ω(fn), then Orb(x, f) is finite and the topological entropy h(f) > 0.

2. Let T be a tree and k, n ∈ N. Then Ω(fk) = Ω(fkn) for each f ∈ C(T, T ) if and
only if n is (T, k)−admissible (see [3] for the details).
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In [2] the authors used their results to give a nice description of non-wandering sets
of the powers of continuous maps of the interval. More precisely, they showed:

a. For any continuous map f of the interval, all the possible sets Ω(fn), n ∈ N appear
in the nested sequence

Ω(f) ⊇ Ω(f2) ⊇ Ω(f4) ⊇ . . . . (∗)

b. Any pre-assigned sequence of equalities and strict containments in (∗) can be
realized by some continuous map of the interval.

In this paper, we study the interrelations of non-wandering sets of the powers of
maps of a star and obtain the following results:

Theorem 1 Let T be a star and p, q be two distinct prime numbers, then Ω(fp) ∪
Ω(f q) = Ω(f) for each f ∈ C(T, T ) if and only if pq > End(T ).

Theorem 2 Let T be a star and p, q be two distinct prime numbers, then Ω(fp) ∩
Ω(f q) = Ω(fpq) for each f ∈ C(T, T ) if and only if p + q ≥ End(T ).

Combining Theorems 1-2 and the results in [3] we have

Theorem 3 Assume that T is a 3-star or a 4-star.

1.1. For any continuous map f of T , all the possible sets Ω(fn), n ∈ N appear in the
following graph (we call it graph A in the sequel, and use −→ and ↓ to indicate
⊇).

Ω(f) → Ω(f2) → Ω(f22
) → Ω(f23

) → Ω(f24
) → . . .

↓ ↓ ↓ ↓ ↓ . . .

Ω(f3) → Ω(f3·2) → Ω(f3·22
) → Ω(f3·23

) → Ω(f3·24
) → . . .

1.2. For any continuous map f of T ,

a. Ω(f2i
) \ Ω(f2i+1

) = Ω(f3·2i
) \ Ω(f3·2i+1

) for each i ∈ {0} ∪ N,

b. Ω(f2i
) \ Ω(f3·2i

) = Ω(f) \ Ω(f3), for each i ∈ N.

2. Any pre-assigned sequence of equalities and strict containments in the first line and
the first column of the graph A can be realized by some continuous map of T .

We remark that for n−star (n ≥ 5) other graphs should be introduced.

2 Definitions and Elementary Properties
By a graph we mean a connected compact one-dimensional polyhedron. A tree is a

graph without any subset which is homeomorphic to the unit circle. For a given tree
T , a subtree of T is a subset of T which is a tree itself. For x ∈ T the number of
connected components of T \{x} is called the valence of T , and if the number is n then
we write V al(x) = n. A point of T of valence 1 is called an end of T, and a point of
valence different from 2 is called a vertex of T . The set of ends of T , the set of vertices
of T and the number of the ends of T will be denoted by E(T ), V (T ) and End(T )
respectively. The closure of each connected component of T \ V (T ) is called an edge.
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A star is either a tree having only one vertex with valence larger than 2 or an arc. Set
Int(T ) = T \ E(T ). Let A be a subset of T containing at least two points. By [A] we
denote the convex hull of A in T . If A = {a, b} then we use [a, b] to denote [A]. We
define (a, b) = [a, b] \ {a, b}, and similarly we define [a, b) and (a, b].

Let T be a tree, the collection of all continuous maps from T into itself will be
denoted by C(T, T ). For f ∈ C(T, T ) and x ∈ T , {x, f(x), f2(x), . . .} is called the orbit
of x and is denoted by Orb(x, f). x is periodic if fn(x) = x for some n ∈ N. Let P (f)
denote the set of periodic points of f . x ∈ T is non-wandering if for every neighborhood
U of x, fn(U)∩U 6= ∅ for some n ∈ N. The set of non-wandering points of f is denoted
by Ω(f).

To prove our results we need the following lemmas. The first two lemmas are routing
generalization of the corresponding results for the interval maps (see [5]) and Lemmas
3-4 are easy to prove.

Lemma 1 Let T be a tree, and f ∈ C(T, T ) and U be a connected subset of T . If
there is n ∈ N with fn(U)∩U 6= ∅, then K = U ∪ f(U)∪ f2(U)∪ . . . has finitely many
connected components.
Proof. As f is continuous and U is connected, fk(U), k ∈ N are all connected. Since
fn(U)∩U 6= ∅, for any i ∈ {0, 1, · · · , n−1}, f i+jn(U)∩f i+(j+1)n(U) 6= ∅, j = 0, 1, 2, · · · .
Hence for any i ∈ {0, 1, · · · , n−1}, Ki = f i(U)∪f i+n(U)∪f i+2n(U)∪· · · is connected.
So K = K0 ∪K1 ∪ ∪ . . . ∪Kn−1 has finitely many connected components. ¤

Lemma 2 Let f : T −→ T be a continuous map of a tree T . Then x ∈ Ω(f) if and
only if for each ε > 0 and each L ∈ N, there is some y ∈ T and some integer m > L
with d(x, y) < ε and fm(y) = x. Equivalently, x ∈ Ω(f) if and only if there are yi −→ x
and ni −→∞ such that fni(yi) = x for each i ∈ N.
Proof. The sufficiency is easy and now we show the necessity. Let x ∈ Ω(f). Without
loss of generality we assume that x is not a periodic point.

As x ∈ Ω(f), by the definition there are yi −→ x and mi ∈ N such that fmi(yi) −→
x. Since x is not periodic it is easy to check mi −→∞. Assume the contrary that there
is ε > 0 and L ∈ N such that for any y ∈ T with d(x, y) < ε and any m > L we have
fm(y) 6= x. Let U = {y ∈ T : d(x, y) < ε1}, where ε1 < ε is small enough so that U is
a connected neighborhood of x. Hence we have x 6∈ K = fL+1(U)∪ fL+2(U)∪ · · · and
x 6∈ f j(K) = fL+j+1(U) ∪ fL+j+2(U) ∪ · · · , j ∈ N. On the other hand, there is some
N > 0 such that for any i > N , yi ∈ U . For any fixed integer j > 0, choose M > N such
that mi > L + j for any i > M . Hence {fmM+1−j(yM+1), fmM+2−j(yM+2), · · · } ⊂ K.
Let aj ∈ K be a limit point of this sequence. Then x = f j(aj) ∈ f j(K). So we have
for any j > 0, x ∈ f j(K) \ f j(K).

As x is a non-wandering point, there is some n > 0 with fn(U) ∩ U 6= ∅. Hence
fn+L(U) ∩ fL(U) 6= ∅, and by Lemma 1 K has finitely many connected components.
Since aj ∈ K \K and K \K is a finite set, there are j2 > j1 > 0 such that aj1 = aj2 = a.
So f j1(a) = f j2(a) = x. Thus f j2−j1(x) = f j2−j1(f j1(a)) = f j2(a) = x, i.e. x is a
periodic point. This contradicts with our assumption. ¤

Lemma 3 Let f : T −→ T be a continuous map of a tree T , and S be a subtree of T .
Then there is y ∈ S such that either y is a fixed point of f or y ∈ (V (T ) ∩ S) ∪ E(S)
such that [y, f(y)] ∩ S = {y}. Clearly, if x ∈ T such that f(x), f(y) are belonging to
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the different connected components of T \ S, then f([y, x]) ⊃ [y, f(x)].
The point y above is called a p-fixed point (for S).

Proof. Let rS be the retraction mapping. As rS ◦ f |S : S −→ S is continuous and S
has the fixed point property, there is a fixed point y of rS ◦ f |S. y is the point we need
as T is uniquely arc-wise connected. ¤

Lemma 4 Let a, c ∈ N and b ∈ Z. If (a, c)|b, then there exist u, u′ ∈ N with
u, u′ ≤ c

(c,a) such that c|(au + b) and c|(−au′ + b), where (x, y) is the greatest common
divisor of integers x and y and x|y means y

x ∈ Z.
Proof. As ( c

(a,c) ,
a

(a,c)) = 1 and (a, c)|b, there is u ∈ N with u ≤ c
(c,a) such that

c
(a,c) |( a

(a,c)u + b
(a,c)). Thus c|(au + b). By the same reasoning there is u′ ∈ N with with

u′ ≤ c
(c,a) such that c|(−au′ + b). ¤

The next two lemmas are the results in [3].
Lemma 5 Let f : T −→ T be a continuous map of a tree T . If there is n ≥ 2 such
that x ∈ Ω(f) \ Ω(fn), then Orb(x, f) is finite.

Lemma 6 Let f : T −→ T be a continuous map of a tree T and p ≥ 3 be a prime
number. Then Ω(fpλ

) = Ω(fpλ+1
) whenever pλ+1 > End(T ).

3 Examples
In this section we will give two examples which also serve as the necessities of

Theorem 1 and Theorem 2.

Example 1. Let T be a star and End(T ) = pq, where p, q are distinct prime numbers,
then there is f ∈ C(T, T ) such that Ω(fp) ∪ Ω(f q) 6= Ω(f).
Proof. Let T be a pq−star with E(T ) = {e1, e2, . . . , epq} and y be the unique vertex
with valence large than 1. Take x, b, c ∈ (e1, y) with e1 < x < b < c < y for some
orientation of [e1, y]. Construct a continuous f : T −→ T such that

1) f(e1) = c, f(x) = y, f(b) = y, f(c) = e2, f(ei) = f(ei+1), 2 ≤ i ≤ pq − 1,
f(epq) = x, and f(y) = y (see Figure 1).

2) f is piece-wise linear with respect to x, b, c, y, e1, . . . , epq.

If B is a neighborhood of x which is small enough, then we readily have that
fnpq+1(B) ∩ B 6= ∅ and fnpq+r(B) ∩ B = ∅, 2 ≤ r ≤ pq for some n ∈ N. That is,
x ∈ Ω(f) \ (Ω(fp) ∪ Ω(f q)). ¤
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Example 2 Let T be a star and End(T ) = p + q + 1, where p, q are distinct prime
numbers, then there is f ∈ C(T, T ) such that Ω(fp) ∩ Ω(f q) 6= Ω(fpq).
Proof. Assume T is a (p + q + 1)−star with E(T ) = {e1, e2, . . . , ep+q+1} and y is the
unique vertex with valence large than 1. Suppose that x, p1, p2, p3, p4, p5 and p6 are the
midpoints of [e1, y], [e2, y], [ep+1, y], [p2, y], [ep+2, y], [ep+q+1, y] and [p5, y] respectively.
Moreover, we take {ai}, {a′i}, {bi}, {b′i} ⊂ (e1, x) such that for some orientation of [e1, x]

e1 < a′1 < a1 < b′1 < b1 < a′2 < a2 < b′2 < b2 < . . . < x

and lim ai = x. Let b0 = e1.
We construct a continuous f : T −→ T as follows (see Figure 2 and Figure 3).

1) f(x) = y, f(p1) = e3, f(p2) = y, f(p3) = p1, f(ei) = f(ei+1), 2 ≤ i ≤ p, f(ep+1) =
x, f(p4) = ep+3, f(p5) = y, f(p6) = p4, f(ei) = f(ei+1), p + 2 ≤ i ≤ p + q,
f(ep+q+1) = x, and f(y) = y.

2) Set f(ai) = f(bi) = y, where i ∈ N and j ∈ {0} ∪ N. Let f(a′i) ∈ [y, e2] and
f(b′i) ∈ [y, ep+2], i ∈ N such that p1 < f(a′1) < f(a′2) < . . . < y and p4 < f(b′1) <
f(b′2) < . . . < y for some orientations of [p1, y] and [p4, y].

3) f is piece-wise linear with respect to the points mentioned above.

If B is a neighborhood of x which is small enough, for each n ∈ N we have:

(1)fnp+1(B) ⊃ [x, p1],

(2)fnp+r(B) ⊃ [y, er+1], 2 ≤ r ≤ p,

(3)fnq+1(B) ⊃ [x, p4],

(4)fnq+r(B) ⊃ [y, ep+r+1], 2 ≤ r ≤ q.
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By (1) and (2), we have x ∈ Ω(f l) for each l which satisfies (l, p) = 1 and x 6∈ Ω(fpk)
for each k ∈ N. By (3) and (4), we have x ∈ Ω(f l) for each l which satisfies (l, q) = 1
and x 6∈ Ω(f qk) for each k ∈ N.

Especially, we have x ∈ (Ω(fp) ∩ Ω(f q)) \ Ω(fpq). ¤
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4 Proofs of the main results
Before we start to prove our theorems, we study some properties under the condition

that f ∈ C(T, T ), x ∈ Ω(fp) \ Ω(fpq), where T is a tree and p, q are natural numbers.
We will introduce some notations which will be used in our proofs.

Let f be a continuous map of a tree T and x ∈ Ω(fp) \ Ω(fpq). By Lemma 2
there are ui −→ x and ni −→ ∞ such that fpni(ui) = x for each i ∈ N and there is
a neighborhood B of x with fpqk(B) ∩ B = ∅ for each k ∈ N. Let K be the smallest
connected subset of T which contains ∪∞i=0f

i(B). Set P = Orb(x, f) ∩ P (f). Let y be
a p-fixed point for [P ] and l0 be the least integer with y ∈ f l0(B).

Set E(K) = {e1, . . . , el} with l = End(K), and we call [y, ei] a segment, where
1 ≤ i ≤ l. A segment [y, ew] is of u−type, if for every natural number M there is some
j ∈ N with Card({f i(uj)|1 ≤ i ≤ pnj − 1} ∩ [y, ew]) ≥ M .

Set Au(z) = {f l0+au+w(z)|0 ≤ w ≤ a − 1}, where a, u ∈ N and z ∈ B. If there is
some b with 1 ≤ b ≤ a such that for every m ∈ N, there are j and t1, t2, . . . , tm such
that Card(Atk(uj) ∩ [y, ew]) ≥ b where k = 1, 2, . . . , m, then [y, ew] is called a u−type
segment which contains at least b points mod a. Let [y, ew] be u−type segment which
contains at least b points mod a. Without difficulty, by the above definition we have
that there are fixed 0 ≤ α1 < α2 < . . . < αb ≤ a− 1 such that for every m ∈ N, there
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are j and t1, t2, . . . , tm such that

{f l0+atk+αi(uj)|0 ≤ i ≤ b} ⊂ [y, ew], k = 1, 2, . . . , m.

In the sequel, we take this as the definition of u−type segment which contains
at least b points mod a, and briefly we call [y, ew] a (u;α1, α2, . . . , αb;mod a)−type
segment. It is easily seen that if a

l > b, then there exists at least one u−type segment
which contains at least b points mod a.

Giving the notations, we will show the following propositions. The proof of Propo-
sition 1 is similar to that of the Theorem 3.1 of [3]. For completeness, we include a
proof.

Proposition 1 Let [y, ew] be (u;α1, α2, . . . , αb;mod pqn)−type segment, where n is
a fixed natural number and 0 ≤ α1 < α2 < . . . < αb ≤ pqn − 1, then (αj − αi, pq) 6 |p
for each 1 ≤ i < j ≤ b.

In particular, if (p, q) = 1 and q is a prime number, then q|(αj − αi) for each
1 ≤ i < j ≤ b.
Proof. Assume the contrary. That is, there are 1 ≤ i0 ≤ j0 ≤ b such that (αj0 −
αi0 , pq)|p. Set a = αj0 − αi0 , then (a, pq)|pnj . By Lemma 4 there are natural numbers
u, u′ ≤ pq

(pq,a) with pq|(au + pnj) and pq|(−au′ + pnj).
Take m = pq + 1 in the above definition, and let j and t1 < t2 < . . . < tm be the

corresponding natural numbers. Let ai = l0 + tipqn + αi0 and bi = l0 + tipqn + αj0 .
We claim:

y < f bm(uj) < fam(uj) < . . . < f b2(uj) < fa2(uj) < f b1(uj) < fa1(uj),

if we define an orientation of [y, ew] such that y < ew.
Proof of the claim Let c2t−1 = at and c2t = bt, 1 ≤ t ≤ m. Then c1 < c2 <
. . . < c2m. Assume that there are 1 ≤ l1 < l2 ≤ 2m with (l2 − l1, 2) = 1 such that
f cl1 (uj) ∈ [y, f cl2 (uj)]. Then

f cl2
−cl1 ([y, f cl2 (uj)] ⊃ f cl2

−cl1 ([y, f cl1 (uj)]) ⊃ [y, f cl2 (uj)].

Hence f b(cl2
−cl1

)([y, f cl2 (uj)] ⊃ [y, f cl2 (uj)], with b = u or u′. As

x ∈ fpnj−cl2 ([y, f cl2 (uj)]) ⊂ fpnj−cl2
+b(cl2

−cl1
)([y, f cl2 (uj)])

⊂ fpnj−cl2
+b(cl2

−cl1
)(f cl2 (B)) = fpnj+b(cl2

−cl1
)(B)

and pq|(pnj + b(cl2 − cl1)), a contradiction.
Hence we have

y < f bm(uj) < fam(uj) < . . . < f b2(uj) < fa2(uj) < f b1(uj) < fa1(uj).

This ends the proof of the claim.
Hence by the claim we have

f bs−as([y, fas(uj)]) ⊃ [y, f bs(uj)] ⊃ [y, fas+1(uj)]

for each 1 ≤ s ≤ pq. Thus

x ∈ [x, y] ⊂ fpnj−au+1([y, fau+1(uj)]) ⊂ fpnj−au+1+a1+(b1−a1)+...+(bu−au)(B).
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As
pq|(pnj − au+1 + a1 + (b1 − a1) + . . . + (bu − au)),

a contradiction. ¤

By Proposition 1, we can get Proposition 2 readily.
Proposition 2 If (p, q) = 1 and q is a prime number, then each u−type segment
contains at most p points mod pq. So the number of u−type segment of K is not less
than q.

Now we are ready to prove our theorems.
Theorem 1 Let T be a star and p, q be two distinct prime numbers, then Ω(fp) ∪
Ω(f q) = Ω(f) for each f ∈ C(T, T ) if and only if pq > End(T ).
Proof. To show the necessity, it is enough to show that whenever End(T ) ≥ pq, there
is some f such that Ω(fp)∪Ω(f q) 6= Ω(f). This is done in Example 1 of the last section.

Now suppose pq > End(T ) and Ω(fp) ∪ Ω(f q) 6= Ω(f). Then there is x ∈ Ω(f) \
(Ω(fp) ∪ Ω(f q)). By Lemma 2, there are vi −→ x and ni −→ ∞ such thatfni(vi) = x
for each i ∈ N and there is an open connected neighborhood B of x with fpk(B)∩B = ∅
and f qk(B) ∩ B = ∅ for each k ∈ N. We may assume that vi ∈ B for each i ∈ N. Set
K = ∪∞i=0f

i(B) and E(K) = {e1, . . . , el} with l = End(K).
First suppose K is connected. Set P = Orb(x, f) ∩ P (f), and let y be a p-fixed

point for [P ]. As pq > End(T ), there is a v−type segment [y, ew] which contains at
least 2 points mod pq. As x ∈ Ω(f) \Ω(fp) and x ∈ Ω \Ω(f q), [y, ew] is their common
v−type segment. Assume that [y, ew] is of (v;α, β;mod pq)−type.

By Proposition 1, (β − α, p) = p and (β − α, q) = q, 1 ≤ α < β ≤ pq − 1. So
pq|(β − α). As 1 ≤ α− β ≤ pq − 1 and p,q are distinct prime numbers, pq 6 |(β − α), a
contradiction.

Now suppose K is not connected, then by Lemma 1 K has finitely many connected
components K1, . . . , Kr with f(K1) ⊂ K2, . . . , f(Kr) ⊂ K1.

Let g = f r and assume x ∈ K1. Then g(K1) ⊂ K1 and x ∈ Ω(g) \ (Ω(gp) ∪ Ω(gq)).
As pq > End(T ) ≥ End(K1) and K1 is connected, a contradiction arrives again if we
replace f by f r and use what we just proved.

Hence we get Ω(f) \ (Ω(fp) ∪ Ω(f q)) = ∅, i.e. Ω(fp) ∪ Ω(f q) = Ω(f). ¤

The same method can be used to show
Theorem 1’ Let T be a star and p1, p2, . . . , pk be distinct prime numbers, then
Ω(fp1) ∪Ω(fp2) ∪ . . . ∪Ω(fpk) = Ω(f) for each f ∈ C(T, T ) if and only if p1p2 . . . pk >
End(T ).

Theorem 2 Let T be a star and p, q be two distinct prime numbers, then Ω(fp) ∩
Ω(f q) = Ω(fpq) for each f ∈ C(T, T ) if and only if p + q ≥ End(T ).
Proof. To show the necessity, it is enough to show that whenever End(T ) ≥ p+q+1,
there is some f such that Ω(fp) ∩ Ω(f q) 6= Ω(fpq). This is done in Example 2 of the
last section.

Now suppose p + q ≥ End(T ) and Ω(fp) ∩ Ω(f q) 6= Ω(fpq). Then there is x ∈
(Ω(fp) ∩ Ω(f q)) \ Ω(fpq). By Lemma 2, there are ui −→ x and ni −→ ∞ such that
fpni(ui) = x, and vi −→ x and mi −→ ∞ such that f qmi(vi) = x for each i ∈ N.
Moreover, there is an open connected neighborhood B of x with fpqk(B) ∩ B = ∅ for
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each k ∈ N. We may assume that ui, vi ∈ B for each i ∈ N. Set K = ∪∞i=0f
i(B) and

E(K) = {e1, . . . , el} with l = End(K).
First suppose K is connected. We divide the proof into several steps.

Step 1. Set P = Orb(x, f) ∩ P (f) and let y be a p-fixed point for [P ]. For each fixed
natural number N , [x, y] 6⊂ fN ([x, y]).
Proof of Step 1: Let l0 ∈ N such that y ∈ f l0(B), then there are nk,mk with pnk > l0
and qmk > l0 as ni −→ ∞ and mi −→ ∞. Hence fpnk(B) ⊃ [fpnk(uk), y] = [x, y].
Similarly we have f qmk(B) ⊃ [x, y].

Assume the contrary. That is, there is N such that [x, y] ⊂ fN ([x, y]). As [x, y] ⊂
fkN ([x, y]) for each k ∈ N, we may assume N > pq + l0. Since p, q are distinct prime
numbers, we have either (p,N) = 1 or (p,N) = 1 or (pq, N) = pq. We discuss them
respectively.

Case a: (p,N) = 1. As (p, q) = 1, we have (p, qN) = 1. By Lemma 4, there is
t ∈ N such that p|(qmk + qNt). Hence x ∈ [x, y] ⊂ fNqt([x, y]) ⊂ f qmk+qNt(B). As
pq|(qmk + qNt), a contradiction.

Case b: (q, N) = 1. The proof is similar to Case a.
Case c: pq|N . As [x, y] ⊂ fN ([x, y]), there is z ∈ (x, y) such that fN (z) = x. As

pq > p + q ≥ End(T ) ≥ l, there are l0 ≤ i 6= j ≤ l0 + pq − 1 such that f i(z) and f j(z)
are in the same segment [y, ew]. We may assume f i(z) ∈ [y, f j(z)]. Then we have

[x, y] ⊂ fN−i([y, f i(z)]) ⊂ fN−i([y, f j(z)]) ⊂ fN−i+j([y, z]) ⊂ fN−i+j([x, y]).

Let t = N + j − i. As pq 6 |t, we have either (t, p) = 1 or (t, q) = 1. Thus, we get
contradiction as in Case a or Case b. This ends proof of Step 1.

Step 2. For each uj , vk, we have fm(uj), fn(vk) 6∈ (x, y) and fm(uj), fn(vk) 6∈ [P ]\P
for each m, n ∈ N.
Proof of Step 2: Assume there are uj and n ∈ N such that fn(uj) ∈ [x, y], 1 ≤ n ≤
pnj − 1, then we have fN ([x, y]) = fpnj−n([x, y]) ⊃ fpnj−n([fn(uj), y]) ⊃ [x, y], where
N = pnj − n. This contradicts with Step 1.

Assume there are uj and n ∈ N such that fn(uj) ∈ [P ]\P , then there is z ∈ P such
that fn(uj) ∈ [y, z]. Set z = fa(x), a ∈ N, then we have [y, z] ⊂ fa([x, y]). Hence

[x, y] ⊂ fpnj−n([fn(uj), y]) ⊂ fpnj−n([z, y]) ⊂ fpnj−n+a([x, y]) = fN ([x, y]),

where N = pnj − n + a. This contradicts with the Step 1 again.
For vk, we can prove in the same way. This ends the proof of Step 2.

Step 3. There is a segment [y, ew] that is not only a u−type segment which contains
at least b1 points mod pq but also a v−type segment which contains at least b2 points
mod pq, where b1, b2 ∈ N and b1 + b2 ≥ 3.
Proof of Step 3: By Proposition 2 the number of u−type segments is not less than q
and the number of v−type segments is not less than p. As p + q ≥ End(K), there are
segments which are not only u−type but also v−type. Set the number of such segments
be s. We assume that each segment which is not only u−type but also v−type only
contains one point mod pq. Set the number of u−type (v−type) but not v−type (resp.
u−type) segments be s1 (resp. s2), then s1 + s2 + s ≤ End(K)− 1 by Step 2.
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We claim either (pq−s)
s1

> p or (pq−s)
s2

> q. Assume the contrary. That is, (pq−s)
s1

≤ p

and (pq−s)
s2

≤ q. Hence q − s
p ≤ s1, p− s

q ≤ s2. Hence

p + q − s

p
− s

q
≤ s1 + s2 ≤ End(K)− s− 1 < p + q − s.

Hence we have pq < p + q, a contradiction.
So we have either (pq−s)

s1
> p or (pq−s)

s2
> q. It contradicts with Proposition 2. This

ends the proof of Step 3.

Step 4. Now we will give a contradiction.
Let [y, ew] be the segment in Step 3 and b1 ≥ 2, b2 ≥ 1. Assume [y, ew] is

(u;α, β;mod pq) and (v; γ;mod pq)−type and we define an orientation of [y, ew] such
that y < ew.

We claim that we can choose k1, k2, . . . , kh; j1, j2, . . . , jh, and t′k1
< t′k2

< . . . <
t′kh

, tj1 < tj2 < . . . < tjh
, where h = pq + 1 such that

y < f bh(vkh
) < f bh−1(vkh−1

) < . . . < f b1(vk1) < ew

and fas(ujs), fa′s(ujs) ∈ [f bs+1(vks+1), f
bs(vks)], where as = l0 + pqtjs + α, a′s = l0 +

pqtjs + β and bs = l0 + pqt′ks
+ γ. To show the claim, first we choose k1 arbitrarily

and then we choose j1 such that fa1(uj1), f
a′1(uj1) are on the left of f b1(vk1). We then

choose k2 such that f b2(vk2) is on the left of the three points above and j2 such that
fa2(uj2), fa′2(uj2) are on the left of f b2(vk2). Repeating the above argument, we can get
what we have claimed (the reason why we can do in such way depends on the results
of Step 1 and Step 2).

By Proposition 1 (β − α, p) = 1. Let a = β − α, then (a, pq)|qmkh
. By Lemma 4

there is t ∈ {1, 2, . . . , pq} such that pq|(qmkh
+ at). As

[y, f bs(vks)] ⊂ [y, fa′s−1(ujs−1)] ⊂ fa′s−1−as−1([y, fas−1(ujs−1)])

⊂ fa′s−1−as−1([y, f bs−1(vks−1)])

for each 2 ≤ s ≤ h, we have

[x, y] ⊂ f qmkh
−bh([y, f bh(vkh

)])

⊂ f qmkh
−bh+(a′h−1−ah−1)([y, f bh−1(vkh−1

)])
⊂ . . .

⊂ f qmkh
−bh+(a′h−1−ah−1)+...+(a′h−t−ah−t)([y, f bh−t(vh−t)])

⊂ f qmkh
−bh+bh−t+(a′h−1−ah−1)+...+(a′h−t−ah−t)(B).

As pq|(qmkh
− bh + bh−t + (a′h−1 − ah−1) + . . . + (a′h−t − ah−t)), a contradiction.

Now suppose K is not connected, then by Lemma 1 K has finitely many connected
components K1, . . . , Kr with f(K1) ⊂ K2, . . . , f(Kr) ⊂ K1.

Let g = f r|K1 and assume x ∈ K1. It is easy to see x ∈ (Ω(gp) ∩ Ω(gq)) \ Ω(gpq).
As p + q ≥ End(T ) ≥ End(K1), we can replace f by g and use what we just proved.
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To sum up, we have proved Ω(fp) ∩ Ω(f q) = Ω(fpq). ¤

Theorem 2’ Let T be a star and p1 < p2 < . . . < pk be distinct prime numbers,
then Ω(fp1) ∩ Ω(fp2) ∩ . . . ∩ Ω(fpk) = Ω(fp1p2...pk) for each f ∈ C(T, T ) if and only if
p1 + p2 ≥ End(T ).
Proof. To show the necessity, it is enough to show that whenever End(T ) ≥ p1+p2+1,
there is some f such that Ω(fp1) ∩ Ω(fp2) ∩ . . . ∩ Ω(fpk) 6= Ω(fp1p2...pk). This is done
in Example 2 of the last section.

Now suppose p1+p2 ≥ End(T ). Then p1+pi ≥ End(T ), 2 ≤ i ≤ k, and by Theorem
2 we have Ω(fp1) ∩ Ω(fp2) ∩ . . . ∩ Ω(fpk) = Ω(fp1p2) ∩ Ω(fp1p3) ∩ . . . ∩ Ω(fp1pk). As
p2 +pi ≥ End(T ), 3 ≤ i ≤ k, and apply Theorem 2 to fp1 we have Ω(fp1p2)∩Ω(fp1p3)∩
. . .∩Ω(fp1pk) = Ω(fp1p2p3)∩Ω(fp1p2p4)∩ . . .∩Ω(fp1p2pk). Then we apply Theorem 2 to
fp1p2 . Inductively, after finite steps we have Ω(fp1)∩Ω(fp2)∩. . .∩Ω(fpk) = Ω(fp1p2...pk).
¤

Proof of Theorem 3: Let T be a 3-star or 4-star and f ∈ C(T, T ). By the previous
lemmas and theorems we have:

(1) Ω(f) ⊇ Ω(f2) ⊇ Ω(f22
) ⊇ . . .,

(2) Ω(f) ⊇ Ω(f3) = Ω(f33
) = . . ., (Lemma 6)

(3) Ω(fpλ
) = Ω(fpλ+1

), where λ ≥ 0 and p ≥ 5 is a prime number, (Lemma 6)

(4) Ω(f2) ∪ Ω(f3) = Ω(f), (Theorem 1)

(5) Ω(f2) ∩ Ω(f3) = Ω(f6). (Theorem 2)

(1.1) For each n ∈ N let n = 2k3tm, where k, t ∈ Z+,m ∈ N and (m, 6) = 1, then
by (1), (2) and (3) we have

Ω(fn) = Ω(f2k3tm) =

{
Ω(f2k

), if t = 0
Ω(f2k3). if t > 0

(1.2) For any continuous map f of T , by (4) and (5) we have

Ω(f) \ Ω(f2) = Ω(f3) \ Ω(f6)
Ω(f) \ Ω(f3) = Ω(f2) \ Ω(f6)

Replacing f by f2i
, i ∈ N we get (a) and (b) respectively.

(2) We now show in the graph A any pre-assigned sequence of equalities and strict
containments in the first line and the first column can be realized.

If Ω(f) = Ω(f3), then any pre-assigned sequence of equalities and strict contain-
ments in the first line can be realized for an interval map [2], and obviously can be
realized for a 3−star map.

If Ω(f) 6= Ω(f3), we construct f as follows: Let T be a 3-star with E(T ) =
{e1, e2, e3} and let y be the unique vertex with valence larger than 1. Take a, b ∈ (e1, y)
such that a ∈ (e1, b). Set T1 = [b, e2, e3] and T2 = [e1, a]. By [3] we can construct
f1 ∈ C(T1, T1) such that Ω(f1) 6= Ω(f3

1 ). By [2] we can construct f2 ∈ C(T2, T2) such
that any pre-assigned sequence of equalities and strict containments in the first line
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can be realized by f2. Now define f : T −→ T such that f |T1 = f1, f |T2 = f2 and f is
linear in [a, b]. Then f is the continuous map we need.

It is easy to obtain maps of 4-star by a small modification. ¤
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