
Po-Fi: Facilitating Innovations on WiFi Networks with an SDN Approach

Zhou Shia, Ye Tiana,∗, Xiaodong Wanga, Jiangyu Pana, Xinming Zhanga

aAnhui Key Laboratory on High-Performance Computing
School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China

Abstract

Most of softwareized WiFi networks rely on dedicated softwares for realizing novel wireless functionalities.

However, such an approach is not flexible enough, and introduces management complexity. On the other

hand, the programmable forwarding pipeline, which models packet processing as multiple stages of forwarding

rules, exhibits great flexibility in facilitating network innovations, and has been recognized as a consensus

for abstracting SDN data plane. In this paper, we present Po-Fi, an architecture for software-defined WiFi

networks. Based on Protocol-Oblivious Forwarding (POF), Po-Fi follows the SDN consensus by abstracting

WiFi AP as a programmable forwarding pipeline, and provides a rich and unified programmability to enable

user to realize novel wireless functionalities with forwarding rules. Comparing with previous approaches, Po-Fi

is highly flexible in facilitating WiFi innovations. To show this, we realize a wide range of use cases with

Po-Fi, including per-client virtual AP (VAP), seamless mobility, multi-AP MPTCP data transmission, smooth

remote AP switching for wireless backhaul, and TDMA MAC scheduling. We implement a Po-Fi prototype

with commodity hardware, and evaluate the use cases with real-world experiments. The results show that the

Po-Fi facilitated innovations can effectively improve the WiFi network services.

Keywords: WiFi, software-defined networking (SDN), programmable forwarding pipeline, Protocol-Oblivious

Forwarding (POF), virtual AP, mobility, MPTCP, WDS, TDMA

1. Introduction

WiFi is everywhere in our life. Cisco predicts that by the year 2022, there will be 549 million WiFi hotspots

on the planet [1]. On the other hand, legacy WiFi suffers from inherited deficiencies such as lack of mobility

support and inefficient medium access, how to facilitate innovations for overcoming the deficiencies is a critical

problem [2].

In the past decade, network innovations are driven by softwareized technologies, including network function

virtualization (NFV) and software-defined networking (SDN). The state-of-the-art SDN technologies such as

OpenFlow [3], P4 [4], POF [5] are initially targeted at wired networks, and they share a common consensus

by abstracting SDN switch as a programmable forwarding pipeline that is composed of multiple stages of

“match+action” tables. The pipeline abstraction is highly flexible in facilitating a wide range of innovations

over the wired SDN (e.g., [6], [7], and [8]), and is supported by emerging programmable hardwares [9][10].

∗Corresponding author
Email address: yetian@ustc.edu.cn (Ye Tian)

Preprint submitted to Computer Networks November 8, 2020

Unfortunately, such a progress does not take place in wireless networks. One reason is that wireless link

layer is more complicated than the wired one; another reason is that OpenFlow, the most widely-used SDN

southbound interface, does not support 802.11 [3]. Existing softwareized WiFi networks employ dedicated

softwares such as hostapd [11] and Click [12]. For example, CloudMAC [13] runs hostapd for providing 802.11

MAC functionalities on virtual machines (VMs), and connects the VMs to physical thin access points (APs)

with an OpenFlow network; Odin [14] implements the split-MAC with a Click modular router agent in AP and

a centralized controller, and leverages OpenFlow for Ethernet backhaul. Although some novel functionalities

have been realized with these approaches, however, there are limitations.

First, comparing with “white box” SDN switch, dedicated software has limited flexibility, as its built-

in functionalities can not be changed by control plane programming. For example, hostapd doesn’t allow

user to program its low-level behaviors. Although Odin enables some novel use cases [14][15], however, its

“Click+OpenFlow” design is based on an implicit assumption that an Odin AP works only under the infras-

tructure mode for connecting wireless clients to wired Ethernet backhaul. Under this assumption, the Click

agent has a built-in functionality to transform the received 802.11 frames to Ethernet frames, and deliver them

to the OpenFlow switch. However, a WiFi AP may work under other modes, for example the wireless distri-

bution system (WDS) mode, in which the AP doesn’t connect to Ethernet, but provides wireless backhaul by

relaying 802.11 frames between wireless client and a remote AP [16]. In such a scenario, the “Click+OpenFlow”

design is no longer applicable.

Second, dedicate software requires a separate control channel besides OpenFlow; moreover, it does not

provide the per-flow control as in OpenFlow, but has other control granularities such as the per-client control

in Odin. The coexistence of heterogeneous control channels and granularities surely increase management

complexity.

Motivated by the observations, in this paper, we present Po-Fi, a novel software-defined architecture for

WiFi networks. Po-Fi is based on Protocol-Oblivious Forwarding (POF) [5], a protocol-independent SDN

data plane, and it follows the SDN consensus by abstracting WiFi AP as one single programmable forwarding

pipeline. Different from dedicated WiFi softwares, a Po-Fi AP doesn’t have any built-in functionality. Instead,

Po-Fi provides a unified programmability, with which a user can realize wireless functionalities by programming

the pipeline with forwarding rules from a centralized controller, thus is more flexible and easier to manage.

To demonstrate Po-Fi’s flexibility, we have realized a wide range of network services as use cases: 1) We

have realized a seamless mobility service that smartly selects new AP for a mobile client to connect to, and

maintains the client’s throughput during the handover. 2) We also enable a multi-APMultipath TCP (MPTCP)

data transmission with Po-Fi, which allows a client with only one WiFi interface to connect to multiple APs

for carrying its simultaneous MPTCP subflows. 3) To demonstrate Po-Fi’s easiness-to-use, we customize a

novel service by combining seamless mobility with multi-AP MPTCP, so that a mobile client can place its

MPTCP subflows on multiple APs, and seamlessly switch the APs with its movement. 4) We realize a WDS

bridge AP for providing wireless backhaul with Po-Fi, and enables the mobile bridge AP to switch its remote

AP smoothly without harming the throughput. 5) Our last use case is to realize a centralized time-division

2

multiple access (TDMA) MAC scheduling, which dynamically allocates time slots on TDMA APs for improving

a client’s throughput in a hidden terminal environment. Note that some of the use cases are first realized in

the literature, and as far as we know, none of the previous softwareized WiFi networks can enable all these use

cases.

We have implemented a Po-Fi prototype with commodity hardware. We build a real-world testbed and

evaluate the use cases. The results indicate that the Po-Fi facilitated innovations can effectively overcome

WiFi’s inherited deficiencies and improve the network services. In summary, our contributions are three fold:

• Architecture: We present a novel software-defined architecture for WiFi networks named Po-Fi that is

highly flexible and easy to program.

• Use cases: We realize a wide range of use cases that provide various novel WiFi services with Po-Fi.

• Prototype and evaluation: We develop a Po-Fi prototype with commodity hardware, and evaluate

the use cases with real-world experiments.

The remainder part of this paper is organized as follows. We discuss related works and introduce POF

in Section 2; Section 3 presents the Po-Fi architecture, and elaborates its key concepts and components; We

describe the exemplary use cases in Section 4; Section 5 presents the prototype implementation and real-world

experiments; We conclude in Section 6.

2. Background

2.1. Related Work

2.1.1. Softwareized WiFi networks

Dedicated softwares such as hostapd and Click are widely adopted for developing a softwareized WiFi

networks. CloudMAC [13] runs hostapd for providing 802.11 MAC functionalities on virtual machines (VMs),

and employs an OpenFlow network to interconnect the VMs with physical thin APs. ÆtherFlow [17] uses

hostapd for WiFi management, and extends OpenFlow for querying and configuring hostapd. However, hostapd

doesn’t allow users to program its low-level behaviors, which reduces its usage in realizing novel and non-

standard functionalities.

Odin [14] follows the one-BSSID-per-client idea to allocate each wireless client a dedicated per-client light

virtual AP (LVAP) that is decoupled from the physical AP, and manages the LVAPs from a central con-

troller. Odin realizes LVAP with the Click modular router [12], and uses OpenFlow for Ethernet backhaul.

5G-EmPOWER [18] [19] provides a unified control for heterogeneous RANs including LTE and WiFi, and

its WiFi AP is implemented with Click and Open vSwitch (OVS) like Odin. As previously discussed, the

“Click+OpenFlow” design is based on an implicit assumption that an AP should always connect wireless clients

to wired Ethernet, but in scenarios such as WDS, the design is not be applicable.

2.1.2. Innovative WiFi services

Many enterprise WiFi systems slice multiple virtual APs (VAPs) from a physical AP. As an extreme case,

the enterprise WiFi system of Fortinet [20] allow per-station VAP by assigning each station a distinct BSSID,

3

and Odin [14] realizes per-client LVAP and enable it to migrate with client movement. BeHop [21] enables

virtual AP with multiple BSSIDs on physical AP, and extends OVS for a centralized controller to remotely

configure the APs.

Novel WiFi network architectures usually take fast inter-AP handover as an exemplary use case. OpenRoads

[22] employs multiple interfaces to connect to multiple APs. ÆtherFlow [17] reduces packet loss during handover

by proactively multicasting downlink traffics to all the APs that the client may connect to. Odin [14] realizes

fast and transparent handover by migrating mobile client’s LVAP. Zeljkovic et al. [23] propose a control plane

algorithm over 5G-EmPOWER for proactively migrating mobile client’s LVAP, with the global knowledge on

locations and mobility of APs and clients.

MPTCP is promising for enhancing reliability and capacity of TCP connections in mobile wireless environ-

ment. Croitoru et al. [24] argue that a mobile client should connect to multiple APs with MPTCP instead

of pursuing fast handover, and propose a client-side AP selection method and sender-side congestion control

algorithm. Palash et al. [25] propose to suppress a client’s additional MPTCP subflows for avoiding an AP to

be overwhelmed by too many subflows, while maintain the fairness among clients. Xu et al. [15] extend Odin

to enable a client to employ multiple APs for data transmission, and present a heuristic algorithm for assigning

flows to APs for maximizing the overall throughput [26].

TDMA is an effective way for overcoming the inefficiency of 802.11’s distributed coordination function

(DCF) MAC in hidden/exposed terminal environments. Soft-TDMAC [27] is a TDMA-based MAC for wireless

mesh network. OpenTDMF [28] enables TDMA in WiFi access network, and provides a flow table interface

analogous to OpenFlow for user to specify how a flow accesses wireless channel. hMAC [29] is a patch to the

ath9k software driver for realizing hybrid TDMA/CSMA MAC.

Unlike previous works which provide only configurability or limited programmability, and typically focus on

one or a few use cases, Po-Fi provides a rich programmability for controlling low-level behaviors of WiFi APs

under the SDN paradigm. Thanks to such a programmability, Po-Fi can facilitate a wide range of use cases.

Some of the use cases are first realized in the literature, and as far as we know, none of the previous WiFi

networks can enable all these use cases alone.

2.2. Protocol-Oblivious Forwarding

Protocol-Oblivious Forwarding (POF) [5][30] is a protocol-independent SDN data plane technology initially

proposed by Huawei. Following the SDN consensus, a POF switch is logically a forwarding pipeline consisting

of multiple stages of “match+instruction” rules, and is programmed by controller through the POF protocol.

Unlike OpenFlow, which can only handle packets of the protocols that it “recognizes”, a POF switch doesn’t

possess any protocol-specific knowledge, instead, it follows the “match+instruction” rules by matching incoming

packets with the {offset, length} tuples as match key, and executes the associated instructions upon the matched

packets. In the following, we briefly introduce the key concepts in POF.

• Matching. POF employs an {offset, length} tuple to match a packet field, where offset indicates the position

from which the match begins, and length is the bits included in the key. For example, to match the address1

to address3 fields in the 802.11 header, the match keys should be {32b, 48b}, {80b, 48b}, and {128b, 48b}

4

move

POF protocol
Control&programming plane

Data plane

Controller

Programming interface

Multipath

VAP

VAP

VAP

VAP

WDS

Link management

ARP

Wired networkmultipath

Po Fi!AP

DHCP

Routing

MAC Schedule

Measurement

wired

backhaul

wireless

backhaul

...

...Handover

Figure 1: Architectural overview of Po-Fi.

respectively.

• Instruction. POF defines a concise set of protocol-agnostic instructions. For example, by executing the

PacketIn instruction, a POF switch reports a matched packet with some auxiliary information to controller;

the Output instruction forwards a packet out through a specified port; the AddField/ModifyField/DeleteField

instruction adds, modifies, or deletes a packet field specified by its {offset, length} tuple; POF also defines

arithmetic and logical instructions, the CalculateField instruction performs in-network computing such as

checksum with given algorithm and arguments, and the ConditionalJump instruction executes a subsequent

instruction based on the condition in its argument; in addition, POF allows multiple instructions to be

grouped into an instruction block for batch execution.

• Command. POF defines a set of commands that enable the controller to directly instruct a POF switch to

perform certain operations. For example, the PacketOut command instructs a POF switch to actively send

a given packet out through a specified port.

• Table and pipeline. After being programmed by controller, a POF switch can be logically viewed as a

forwarding pipeline composed of multiple flow tables, where each table is a collection of “match+instruction”

rules. POF defines the TableMod command to add or remove flow table to/from the pipeline, and the FlowMod

command to install or revoke rule table entries. For directing a packet from one table to a next table, POF

defines the GotoTable instruction.

• Metadata. Metadata is a piece of memory in POF switch for state tracing. POF defines two types of

metadata, namely packet metadata and flow metadata. Packet metadata is associated with each packet

in pipeline for tracing packet-level states such as ingress port and timestamp; while the flow metadata is

associated with a forwarding rule, and is used to trace the flow-level statistics. Data pieces in metadata are

also addressed with {offset, length} tuples, and POF defines the WriteMetadata to write a value to a data

piece in metadata.

5

2.2.1. Comparison with P4

P4 [4] is programming language for configuring clean-slate P4 switches. A P4 program includes header

formats, parser specification, match-action table specification, and control flow that describes the pipeline

structure. The P4 compiler compiles the program into configurations for different target switches (e.g., software

switch, Tofino switch). After the configuration, a P4 switch still needs to connect to a controller, and populates

its tables with rules for processing packets at run time.

Comparing with P4, POF doesn’t have a configuration phase, and all capabilities of a POF switch is

determined by the control plane program at run time. Moreover, POF allows an on-demand parsing scheme,

where a packet field will be parsed in a POF switch only when it is necessary; on the other hand, in P4, the

frontend parser comprehensively parses all the fields regardless of whether or not they are of interest.

Despite these differences, we believe that the basic idea in this paper, that is, realizing innovative WiFi

services by programming a forwarding pipeline, can also be enable with P4 in principle. We select POF over P4

for the reason that currently P4 has only Ethernet chips, while the P4 software switch is considerably slower

that the POF one [31].

3. Architecture

We present an overview of the Po-Fi architecture in Fig. 1. Po-Fi has a POF-compatible wireless data plane

consisting of POF-compatible WiFi APs (called Po-Fi APs), and a centralized control and programming plane.

Logically, a programmed Po-Fi AP is a forwarding pipeline containing multiple stages of “match+instruction”

rules, which dictate how incoming packets should be handled in the AP.

Po-Fi’s control and programming plane contains a POF SDN controller (e.g., [31] and [32]), which allows a

user to arbitrarily define packet formats, construct pipeline in Po-Fi AP, and implement network functionalities

with forwarding rules. More specifically, the controller program handles PacketIn event reported from a Po-Fi

AP, install, modify, and revoke forwarding rules on the AP as in conventional SDN like OpenFlow. More details

on POF SDN programming can be found in [31]. A number of program modules that realize various network

services run over the controller. In particular, the Link management module manages all the wireless links,

and the Measurement module collects measurements from the network. The two modules provide supports to

other modules for realizing specific services.

3.1. Per-Client Virtual AP

Some novel WiFi services are based on the concept of per-client virtual AP (VAP). Logically, a VAP is a

dedicate AP for an individual wireless client. For facilitating per-client VAP, when a client joins the network,

Po-Fi assigns a distinct Basic Service Set Identifier (BSSID) for it to associate with, and places rules in Po-Fi

AP for handling its uplink/downlink traffics. With one-BSSID-per-client, a VAP is completely decoupled from

the physical AP, and can be placed at any Po-Fi AP(s). Note that per-client VAP is not mandatary, and a

Po-Fi AP may or may not host VAPs depending on application contexts.

6

802.11 frame

ethernet frameIngress

match: metadata.in_port

belong to Po-Fi AP / hosted VAP

data frame

mgmt frame

PacketIn to controller

802.11 ethernet

ethernet ethernet

Ethernet

port

Monitor

WiFi port

ethernet 802.11

802.11 802.11

802.11 frame

Egress

match: metadata.in_port,

 ethernet.dst_mac,

 wifi.frame_ctrl,

 wifi.address1,

 wifi.address2,

 wifi.address3

CheckBelonging

match: wifi.address1

FrameFilter

match: wifi.type,

 wifi.subtype

ethernet frame

Ethernet

port

Monitor

WiFi port

Master

WiFi port

Master

WiFi port
Ingress ports

Output ports

Figure 2: Layout of programmable forwarding pipeline in Po-Fi AP. Note that an Ethernet frame enters into the pipeline from

Ethernet or master WiFi port, and a raw 802.11 frame enters the pipeline from Monitor WiFi interface; when outputting a packet

through monitor WiFi interface, the packet must be a raw 802.11 frame, similarly, the packet must be an Ethernet frame if it is

outputted via Ethernet or master WiFi interface.

3.2. Po-Fi AP

3.2.1. Forwarding pipeline

Roughly speaking, a Po-Fi AP is developed by interconnecting commodity wired and wireless network

interfaces with a POF switch. A Po-Fi AP has at least one WiFi interface in the monitor mode, and may also

have an Ethernet interface and a WiFi interface under the master mode, depending on its application context.

When a Po-Fi AP first connects to the controller, it is initialized as a forwarding pipeline. As shown in Fig. 2,

the pipeline is composed of four “match+instruction” tables, which we describe as the following.

a. The Ingress table at the head of the pipeline receives incoming packets from both wired and wireless ports.

The table employs rules to match a packet’s ingress port in_port in its associated metadata1. If the packet

is an Ethernet frame from an Ethernet or a master WiFi port, a GotoTable instruction is applied to direct

it to the Egress table at the tail of the pipeline; for an 802.11 frame from the monitor WiFi port, the Ingress

table strips its RadioTap header and directs it to the FrameFilter table.

b. The FrameFilter table differentiates 802.11 frames by matching the type and sub_type fields in the 802.11

header. All management frames are reported to the controller with the PacketIn instruction, while data

frames are directed to the CheckBelonging table.

c. The CheckBelonging table examines whether an incoming 802.11 data frame should be handled by the

Po-Fi AP. More specifically, rules are applied to match the frame’s address1 field against the BSSIDs of

the hosted VAPs and the Po-Fi AP’s MAC address, and a matched frame, which either belongs to a hosted

VAP or directly belongs to the AP, is directed to the Egress table.

d. The Egress table receives both Ethernet frames from the Ingress table and 802.11 data frames from the

CheckBelonging table, and outputs them according to their destination MAC addresses. Before being sent

1Unless otherwise specified, we refer to metadata as packet metadata in this paper.

7

out, frames are transformed to fit their output ports: for a frame to be sent out through a monitor WiFi port,

DeleteField and AddField instructions are applied to encapsulate its payload with 802.11 and RadioTap

headers; similarly, a frame sent out through an Ethernet or the master WiFi port must be transformed into

an Ethernet frame.

Note that here we only describe the minimum set of rules. For realizing a specific functionality, the tables

will be augmented with additional rules.

3.2.2. Handling uplink / downlink traffics

A Po-Fi AP has different network interfaces, and its pipeline can be programmed to handle uplink/downlink

traffics differently. Following we describe some modes that a Po-Fi AP can be programmed into.

• Infrastructure mode: A Po-Fi AP in this mode has a monitor WiFi interface and an Ethernet interface

for connecting wireless clients to Ethernet backhaul. A client can either connect to the Po-Fi AP directly

by using the AP’s MAC address as BSSID, or connect to its VAP hosted on the AP with the assigned

BSSID. For an uplink 802.11 data frame from a wireless client, if it belongs to a hosted VAP or the Po-Fi

AP, it traverses the four tables, and at the Egress table, it is modified into an Ethernet frame and sent

out to Ethernet. For a downlink Ethernet frame destined to a client, it is checked at the Egress table to

find out the client’s BSSID, if matched, the frame is modified into an 802.11 data frame for carrying the

BSSID, and is sent out via the monitor WiFi port. Use cases for this mode can be found in Section 4.1

and 4.2.

• WDS mode: In this mode, a Po-Fi AP works as a bridge AP in WDS, and it relays 802.11 frames

between wireless clients and a remote AP with a monitor WiFi interface. Both uplink and downlink

frames traverse the four tables: an uplink frame from a wireless client is modified at the Egress table to

carry the remote AP’s MAC address in its BSSID field (or Receiver Address (RA) field if a 4-addressed

WDS scheme is adopted); and a downlink frame is checked at the CheckBelonging table to see if it belongs

to this AP by matching the frame’s BSSID or RA with the AP’s MAC address, if matched, the frame is

modified at the Egress table to carry its destination client’s BSSID, and sent out to the air. Section 4.3

describes a use case for this mode.

• Regular mode: In this mode, a Po-Fi AP has a master WiFi interface, an Ethernet interface, and a

monitor WiFi interface. The Po-Fi AP in this mode doesn’t host VAPs, instead, a client connects to

the master WiFi interface as connecting to a regular AP, and Ethernet frames are switched between the

master WiFi interface and the Ethernet ports at the Egress table as in wired SDN. Meanwhile, the monitor

WiFi interface overhears the 802.11 frames transmitted and received by the master WiFi interface, and

collects wireless measurements by inserting rules in the Ingress table. Section 4.4 presents an example

use case for this mode.

8

(1) Probe Request
(2) PacketIn

(5) Probe Response

(6) Authentication & Association

Data

(3) Select AP and

assign BSSID

Wireless client Link mgmt. module

on controllerVAP

(4) PacketOut

(7) FlowMod

install VAP rules

Po!Fi AP

Figure 3: Client association and VAP deployment.

3.2.3. Acknowledging data frame

The pipeline in a Po-Fi AP is responsible for non time-critical tasks, however, a WiFi AP is required to

acknowledge a data frame after an interval known as Short Inter-frame Spacing (SIFS). In particular, when

hosting multiple VAPs, a Po-Fi AP must acknowledge all the data frames that carry the BSSIDs of the VAPs.

Here we employ Wi-5’s approach [33] by patching the ath9k driver for acknowledging the data frames. On

receiving an 802.11 data frame, the patched driver matches the BSSID field with its locally stored BSSID mask,

and acknowledges the matched frames.

We extend the software POF switch to add a new command for updating the BSSID mask. Each time the

controller inserts or removes the rules of a VAP on a Po-Fi AP, it also executes the command to instruct the

POF switch to update the AP’s BSSID mask as well.

3.3. Link Management

The controller Link management module is responsible for managing wireless links. In particular, since a

client may connect to VAP instead of physical AP, the module also manages the rules that realize VAPs in

Po-Fi APs.

A VAP is created on client association. As demonstrated in Fig. 3, when a wireless client connects to the

Po-Fi network, it broadcasts an 802.11 Probe Request to all the APs (step 1). As a management frame, the

frame is reported to the controller (step 2). On receiving the client’s Probe Request, the Link management

module selects an AP among the Probe-reporting APs for hosting the VAP, and assigns a distinct BSSID

to it (step 3). The module further instructs the selected AP to reply a Probe Response with the assigned

BSSID to the client, using the PacketOut command (step 4-5). The client and the selected AP then proceed to

exchange the authentication and association-related frames (step 6). Note that during the association, all the

management frames from the client are indeed handled by the Link management module and replied through

the selected AP. Finally, the module installs rules to the CheckBelonging and Egress tables in the selected AP,

and completes the client association (step 7). In step 3-4, the controller can also instruct the selected Po-Fi

AP to reply with its own MAC address as BSSID without hosting any VAP.

For setting up a WDS wireless backhaul link, the Link management module instructs a Po-Fi AP to serve

as a bridge AP by actively connecting to a remote AP (which can be a regular AP) by playing the client side

in Fig. 3. In this case, the controller module sends out all the request frames and handles all the responses

9

 C
o
n
tr

o
ll

er

(3) make VAP

migration decision

AP1 (residence AP candidate AP)

AP2 (candidate AP residence AP)

VAP

VAP

E
th

ern
et b

ack
h

au
l

move

Figure 4: VAP migration-based seamless handover facilitated by Po-Fi.

through the bridge AP.

4. Use Case

4.1. Seamless Mobility

In regular WiFi, when a mobile client moves away from its connected AP and approaches to a new AP, it

needs to disconnect from its current AP before connecting to the new one. During such a “break-before-make”

AP handover, considerable packets are lost. In the following, we show how we can realize a seamless mobility

service with Po-Fi.

4.1.1. VAP migration-based AP handover

For realizing seamless mobility, the Po-Fi APs are programmed into the infrastructure mode and host VAPs

for clients. Since a client’s per-client VAP is a set of forwarding rules, and installing/revoking the rules is

light-weighted, we can realize a seamless AP handover by migrating the client’s VAP to a new physical AP

rather than forcing the client to reconnect to the new AP. For enabling a smart VAP migration, we program

the Po-Fi APs within the mobile client’s communication range to monitor their perceived signal strengths, and

migrate the VAP accordingly. Hence, for a mobile client, we refer to the AP that hosts its VAP as its residence

AP, and the other AP(s) that measure the client’s signal strength as the candidate AP(s).

To avoid immature migration, VAP migration decisions should be made based on predicted signal strengths

rather than the currently measured ones. For signal strength predicting, we employ the Holt-Winters double

exponential smoothing [34] as

Li = αRi + (1− α)(Li−1 + Ti−1)

Ti = β(Li − Li−1) + (1− β)Ti−1

Fi+k = Li + k × Ti (1)

where α and β are weight parameters, Ri is the ith measured signal strength, Li and Ti are the smoothed signal

strength and change rate up to the ith measurement. Fi+k is the predicted signal strength in a near future

after k measurements, which is calculated by taking Li and Ti into consideration.

10

CheckBelonging

match: wifi.address1

#rule for residence AP

#instruction block #1

CalculateField (metadata.rssi, Li, Ti, Fi+k)

ConditionalJump (Fi+k < th1,

 PacketIn (pkt, "client_leaving", Fi+k))

GotoTable (Egress)

otherwise PacketIn (pkt, "new_client")

Ingress

match: metadata.in_port metadata.rssi radiotap.rssi

(a) AP1 (residence AP)

CheckBelonging

match: wifi.address1

#rule for candidate AP

#instruction block #2

CalculateField (metadata.rssi, Li, Ti, Fi+k)

ConditionalJump (Fi+k > th2,

 PacketIn (pkt, "client_approaching", Fi+k))

Drop

otherwise PacketIn (pkt, "new_client")

Ingress

match: metadata.in_port metadata.rssi radiotap.rssi

(b) AP2 (candidate AP)

Figure 5: Rules in the pipeline for (a) residence AP and (b) candidate AP.

As demonstrated in Fig. 4, a client’s residence and candidate APs continuously monitor and predict their

perceived signal strengths. If the predicted signal strength ss1 at the residence AP is lower than a threshold

th1, the AP reports a “client leaving” PacketIn event with ss1 to the controller (step 1); if the predicted signal

strength ss2 at a candidate AP is above a threshold th2, the AP reports a “client approaching” event with ss2

(step 2). On receiving the two reports, the controller checks if ss1− ss2 > ∆, and migrates the VAP (step 3-7).

4.1.2. Realization

Next, we present how to realize the VAP migration-based seamless handover with Po-Fi. We use Fig. 4

as example to describe the realization details, where AP1 is the client VAP’s residence AP, and AP2 is its

candidate AP.

Signal strength measurement and predicting

We exploit the RadioTap header’s Received Signal Strength Indicator (RSSI) field for measuring the signal

strength. More specifically, as shown in Fig. 5, for both residence and candidate APs, a rule is inserted in

the Ingress table to extract each incoming 802.11 frame’s RSSI, and write the value to metadata using the

WriteMetadata instruction.

Frames from a mobile client are processed differently by the CheckBelonging tables in the residence and

candidate APs. Fig. 5(a) presents the rules in a residence AP (i.e., AP1 in Fig. 4). The rule in the Check-

Belonging table matches a frame’s address1 field with the VAP’s BSSID, and applies an instruction block for

11

Algorithm 1: VAP migration
Input : event

Algorithm VAP Migration

if event.type = client_leaving then

OnClientLeaving(event);

if event.type = client_approaching then

OnClientApproaching(event);

if event.type = new_client then

OnNewClient(event);

Procedure OnClientLeaving(event)

Add event.client to client_set;

Procedure OnClientApproaching(event)

client← event.client;

Add event.{AP, ss} to client.AP_set;

if client ∈ client_set then

{AP1, ss1} ← client’s current residence AP;

Select {AP2, ss2} from client.AP_set;

if ss2 − ss1 > ∆ then

Install residence AP rule for client to AP2;

Remove residence AP rule for client from AP1;

Install candidate AP rule for client to AP1;

Remove candidate AP rule for client from AP2;

Procedure OnNewClient(event)

if event.client is legitimate then

Install candidate AP rule for event.client to event.AP ;

signal strength predicting and event reporting.

We further elaborate the instruction block, which applies Equation (1) to predict the signal strength, in

details. We keep Li, Ti, and the predicted signal strength Fi+k as three data pieces in the flow metadata

associated with the rule, and use the CalculateField instruction to update their values on each matched

frame. Afterwards, a ConditionalJump instruction is executed: if Fi+k < th1, the PackedIn instruction is

employed to report a “client leaving” event with Fi+k. Afterwards, the frame is directed to the Egress table.

The rules in the candidate AP (i.e., AP2 in Fig. 4) is presented in Fig. 5(b). The rule in the CheckBelonging

table checks BSSID as in Fig. 5(a), but applies a different instruction block that predicts the signal strength

Fi+k, and reports a “client approaching” event if Fi+k > th2. Afterwards, the frame is dropped, as a replica is

forwarded to its destination by AP1, the residence AP of the client.

Finally, if a frame’s address1 field doesn’t match any BSSIDs of the VAPs that the Po-Fi AP serves as a

residence or a candidate AP, it is reported to the controller as a “new client” event, as such an incident indicates

that the AP “sees” a new client, and is a potential candidate AP for the client.

VAP migration algorithm

12

We present the controller VAP migration algorithm, which handles the three event reports, in Algorithm 1.

On receiving a “client leaving” event, the algorithm adds the corresponding client to client_set, which contains

the clients that are unsatisfied with their current residence APs. When a “client approaching” event is reported

from an AP, the AP (together with the predicted signal strength) is added to AP_set associated with the

client, which keeps the candidate APs that are good enough to migrate to. The algorithm then examines if

the client is in client_set: if yes, the AP with the strongest signal is selected from the client’s AP_set as its

new residence AP, and the VAP is migrated if the difference between the signal strength predictions exceeds

∆. Finally, on receiving a “new client” event from an AP, the algorithm installs the rule to make the AP a new

candidate AP for the client.

The Po-Fi facilitated realization for seamless handover is highly scalable, as all the computational-intensive

tasks of signal strength smoothing and predicting are performed at the Po-Fi APs, while the controller algorithm

only handles event reports. We examine the use case on real-world testbed in Section 5.3.

4.2. Multi-AP MPTCP Data Transmission

4.2.1. Multi-AP MPTCP

Over 75% of the wireless bottlenecks are closely related to AP [35], and simultaneously employing multiple

APs is promising for enhancing the communication reliability in WiFi networks [24]. On one hand, client

devices are ready for multipathing, as the Multipath TCP (MPTCP) protocol, which is the de facto standard

for multipath data transmission [36][37], has been implemented in Linux kernel and iOS. But on the other hand,

in regular WiFi, a client connects to only one AP at a time. In this use case, we show that with Po-Fi, we

can realize a multi-AP MPTCP data transmission that enables a client with only one WiFi interface to employ

multiple APs to carry its MPTCP subflows.

MPTCP is an extension of TCP for allowing multiple subflows within a connection. Being backward-

compatible, in MPTCP, two ends follow the three-way handshake to establish a subflow as in regular TCP.

During the handshake, if both ends contain the MP_CAP (multipath capable) option in the TCP header’s option

field, they set up the first subflow; if the MP_JOIN (join connection) option is contained, a subsequent subflow

is established and joins the existing MPTCP connection. Each MPTCP subflow has a unique {proto, src_ip,

dst_ip, src_port, dst_port} tuple for distinguishing it from other subflows and regular TCP flows, and subflows

belonging to a same MPTCP connection share a same token [36].

The multi-AP MPTCP use case is demonstrated in Fig. 6, where Po-Fi APs are programmed into the

infrastructure mode and host VAPs. Here we refer to the AP on which a client’s VAP is initially placed and

carries its first subflow as its primary AP. When a subsequent subflow (from a same WiFi interface but a

different TCP port) is added, the controller selects a different AP as its secondary AP for carrying the subflow.

As a consequence, a wireless client may have its VAP simultaneously placed at one primary AP and multiple

secondary APs, thus greatly enhances its data communication reliability.

13

 C
o
n
tr

o
ll

er

Wired network1
st
 subflow

2
nd

 subflow

(5) Select AP2

for 2nd subflow

AP1 (primary AP)

AP2 (secondary AP)

Figure 6: Po-Fi facilitated Multi-AP MPTCP data transmission.

CheckBelonging

match: wifi.address1 + subflow1's 5-tuple

#allowing 1st subflow

GotoTable (Egress)

Ingress

match: wifi.address1 + tcp.control_bits

#monitoring subflow setup / teardown

PacketIn (pkt)

GotoTable (FrameFilter)

match: wifi.address1 + subflow2's 5-tuple

#disallowing 2
nd

 subflow

Drop

match: wifi.address1 + tcp.control_bits

#subflow setup / teardown
GotoTable (Egress)

(a) AP1 (primary AP)

CheckBelonging

match: wifi.address1 + subflow2's 5-tuple

#allowing 2
nd

 subflow
GotoTable (Egress)

match: wifi.address1 + subflow1's 5-tuple

#disallowing 1
st
 subflow

Drop

(b) AP2 (secondary AP)

Figure 7: Rules in the pipeline for (a) primary AP and (b) secondary AP.

14

move

Bridge AP

AP1 AP2

 C
o
n
tr

o
ll

er

(1) Report signal strengths

...
(2) Instruct to associate with remote AP2

(3) Update rule for relaying to AP2

(4) Instruct to dissociate from remote AP1

Figure 8: Po-Fi facilitated wireless backhaul and smooth remote AP switching for mobile bridge AP.

4.2.2. Realization

We describe how to realize the Po-Fi facilitated multi-AP MPTCP data transmission with Fig. 6 as example,

where AP1 is the client’s primary AP, and AP2 is a secondary AP.

In multi-AP MPTCP, we require the controller to be aware of a wireless client’s MPTCP connection status.

To enable this, we insert rules in the Ingress table of the primary AP (i.e., AP1 in Fig. 6) to monitor all the

TCP control segments (step 1), and report them to the controller before directing them to the next table.

The controller examines the PacketIn TCP control segments and detects setup/teardown of each MPTCP

subflow. If an MPTCP subflow is set up with a new token at AP1, the controller infers that it is the first

subflow of a new MPTCP connection, and inserts a rule in AP1’s CheckBelonging table to allow the subflow

(step 2-3). As shown in Fig. 7(a), the rule matches the 5-tuple of the subflow as well as the client VAP’s

BSSID, and directs the matched frames to the Egress table for transmission.

If setup of a second subflow is detected, the controller selects a different Po-Fi AP as the client’s secondary

AP (i.e., AP2 in Fig. 6) (step 4-5), inserts a rule in its CheckBelonging table for allowing the second subflow,

and disallowing the first subflow (step 6-7). Meanwhile, as shown in Fig. 7(a), a rule is inserted in AP1’s

CheckBelonging table to disallow the second subflow (step 8). Similarly, each time a subsequent subflow is

added, the controller selects a new secondary AP, inserts the rules for allowing the subflow and disallowing the

previous subflows on that AP, and installs rules to disallow the new subflow in the primary and all the other

secondary APs. For tearing down a subflow, the controller removes the corresponding rules for allowing and

disallowing the subflow from the primary and secondary APs. Algorithm 2 presents the complete algorithm,

and we valuate the use case in Section 5.4.

4.3. Smooth Remote AP Switching

802.11’s wireless distribution system (WDS) defines wireless backhaul in WiFi networks [16]. In WDS, a

bridge AP plays the client side in the association procedure to set up a wireless backhaul link with a remote

WiFi AP, and relays 802.11 frames between wireless clients and the remote AP. WDS can be used for quickly

providing WiFi access to areas that lack infrastructures.

We consider a use case as demonstrated in Fig. 8, where Po-Fi controls only a mobile AP and programs it

into a bridge AP, while all the remote APs are regular APs. Since the mobile bridge AP moves around, when

15

Algorithm 2: Multi-AP MPTCP
Input : AP1 the primary AP, Secondary_AP_Set, Sflow_Set

Algorithm Multi-AP MPTCP

if sflow setup detected then

if first subflow then

Install rule for allowing sflow to AP1;

else

Select AP2 as a new secondary AP;

Install rule for allowing sflow to AP2;

for sflowp ∈ Sflow_Set do

Install rule for disallowing sflowp to AP2;

Install rule for disallowing sflow to AP1;

for AP ∈ Secondary_AP_Set do

Install rule for disallowing sflow to AP ;

Add AP2 in Secondary_AP_Set;

Add sflow in Sflow_Set;

if sflow teardown detected then

if first subflow then

Remove rule for allowing sflow from AP1;

else

AP2 = sflow’s secondary AP;

Remove all MPTCP rules from AP2;

Remove AP2 from Secondary_AP_Set;

Remove rule for disallowing sflow from AP1;

for AP ∈ Secondary_AP_Set do

Remove rule for disallowing sflow from AP ;

Remove sflow from Sflow_Set;

16

FrameFilter

match: wifi.type + wifi.subtype

#Beacon frame

PacketIn (pkt, metadata.rssi)

Ingress

match: metadata.in_port metadata.rssi radiotap.rssi

Egress

match: wifi.frame_ctrl wifi.bssid remote AP’s mac address

Figure 9: Rules in the pipeline for bridge AP.

it departs from its currently connected remote AP (i.e., AP1 in Fig. 8) and approaches to a new one (i.e., AP2

in Fig. 8), its wireless backhaul link with AP1 deteriorates, and the bridge AP should switch its remote AP

from AP1 to AP2 for maintaining its wireless backhaul link.

However, in regular WiFi’s "break-before-make" approach, the bridge AP must first disconnect from AP1

before connecting to AP2, and considerable packets are lost during the switching. In this use case, we realize

a smooth remote AP switching with Po-Fi, which enables the bridge AP to switch its remote AP in a “make-

before-break” manner.

In our use case, the bridge AP is responsible for collecting wireless measurements and initiating the switching.

In particular, signal strengths of AP1 and AP2 are collected from their Beacon frames. As shown in Fig. 9,

we insert a rule at the bridge AP’s Ingress table to extract RSSI from a Beacon frame, keep it in metadata,

and report the frame with RSSI to the controller at the FrameFilter table (step 1). The controller compares

the RSSIs from AP1 and AP2, and decides to switch to AP2 only when the signal from AP2 is δ dBm stronger

than the ones from the other APs for consecutive r Beacons.

Once the controller decides to switch to AP2, it first instructs the bridge AP to associate with AP2 by

following the procedure described in Section 3.3 (step 2). As shown in Fig. 9, the controller also updates the

rule in the Egress table to modify each out-going uplink data frame’s BSSID (or RA if a 4-addressed WDS

scheme is adopted) as AP2’s MAC address (step 3). Finally, the controller instructs the bridge AP to disconnect

from AP1 (step 4).

We can see that in the Po-Fi facilitated AP switching, the bridge AP disconnects from AP1 only after

it has successfully connected to AP2 and updated the rule for relaying the frames. Obviously with such a

“make-before-break” approach, packet losses can be avoided. We evaluate the use case in Section 5.6.

4.4. TDMA MAC Scheduling

802.11’s distributed coordination function (DCF) is inefficient in handling interferences in hidden/exposed

terminal environments, while TDMA, which schedules medium access in a synchronized and centralized manner,

is effective for overcoming such deficiency [27][28]. Although by exploiting 802.11’s power saving mechanism,

medium-competing flows can be allocated to pre-configured non-overlapping time slots, however, how to smartly

allocate time slots to different flows for improving the wireless transmission is still unknown.

In this use case, we integrate a TDMA MAC layer named hMAC [29] on Po-Fi AP, moreover, with Po-Fi’s

17

MPTCP subflow1 MPTCP subflow2

move

Hidden terminal

 Controller

TDMA AP1 TDMA AP2

Figure 10: Po-Fi facilitated TDMA MAC scheduling.

programmability, we realize a centralized TDMA MAC scheduling that allows user to dynamically allocate

TDMA time slots on medium-competing network flows based on wireless measurements, for maximizing the

overall transmission throughput.

A TDMA AP is developed by programming a Po-Fi AP into the regular mode, and applying the hMAC

driver patch to the AP’s master WiFi interface. hMAC exploits 802.11 standard power saving functionality to

pause and unpause software queues within the ath9k wireless driver, and each software queue is identified with

destination MAC address and IP header’s DSCP field. hMAC also provides APIs for user to divide time slots,

and configure each time slot with an access rule based on destination MAC and DSCP. Note that hMAC does

not replace the standard CSMA/CA, as within a time slot, the AP still follows CSMA/CA to compete for air

time with other non-TDMA transmitters.

To enable the centralized TDMA MAC scheduling, we expand the software POF switch to add a new

command, which allows the controller to instruct a POF switch to configure a given time slot’s access rule

using hMAC’s API. Each time the controller allows a flow on an AP and allocates some time slots for it, it

assigns the flow with a DSCP value that is unique among the flows destined to the same client on that AP,

and inserts a rule in the Egress table as shown in Fig. 11 to modify each outgoing packet’s DSCP field. The

controller then calls the command to update the access rules of the allocated time slots on the AP.

We demonstrate the use case for the Po-Fi facilitated TDMA MAC scheduling in Fig. 10: Two TDMA

APs have their master WiFi interfaces working on a same channel. A client employs two virtual interfaces to

connect to two TDMA APs, and sets up an MPTCP connection containing two subflows, with each AP carrying

a subflow for downloading from a wired host. For each subflow, rules are placed in the Egress table to modify

DSCP field for downlink packets as previously described (step 1). The client moves from one AP towards the

other. However, although the client can communicate with both APs, the APs are out of each other’s carrier

sense range, thus are hidden terminals to each other. As a consequence, the two APs will contend for medium

access without any coordination, and the client will suffer low throughput due to the interferences between its

two subflows.

One naive approach is to configure the two subflows with equal number of none-overlapping time slots for

avoiding the interference. However, such a static allocation ignores the fact that the AP closer to the client

has a stronger signal, and should be allocated with more time slots. Motivated by this observation, we employ

a monitor WiFi interface on the AP, collect signal strengths, and allocate time slots to the subflow on the AP

accordingly. More specifically, we insert rules as in Fig. 11 to measure and predict RSSIs from the overheard

18

CheckBelonging

match: wifi.address1 + subflow's 5-tuple

#predict and report signal strength

#instruction block

CalculateField (cnt = cnt+1)

CalculateField (metadata.rssi, Li, Ti, Fi+k)

ConditionalJump (cnt = N,

 PacketIn (pkt, Fi+k)

 WriteMedatata (cnt, 0))

Ingress

match: metadata.in_port metadata.rssi radiotap.rssi

Egress

match: metadata.in_port + subflow's 5-tuple

#modify dscp field
ModifyField (ipv4.dscp)

Figure 11: Rules in the pipeline for TDMA AP.

AP1 AP5

AP4

AP2

AP3

Seminar room

Office Office Office
AP6

Figure 12: Testbed with six APs, where AP2 and AP6 are out of each other’s carrier sense range.

802.11 frames using Equation (1) (step 2), and report the results to the controller every N frames (step 3).

Note that here we employ an instruction block in the CheckBelonging table, in which we use metadata cnt as

the frame counter, and clear it every N frames.

On receiving the predicted RSSIs from the APs, the controller computes the time slots that should be

allocated to the ith subflow as

ni = [
f(RSSIi)

∑2

j=1
f(RSSIj)

× n] (2)

where RSSIi is the signal strength predicted for APi, f(x) = 0.3382× x+ 26.5 is the liner regression between

RSSI and throughput [38], and n is the total number of time slots that can be allocated. Finally, to avoid

frequent adjustment, the controller updates a subflow’s time slot allocation only when the time slot difference

before and after the update is above a threshold d (step 4). We evaluate the use case with real-world testbed

in Section 5.7.

4.5. Discussion

From the use cases, we can see that Po-Fi can facilitate a wide range of WiFi innovations. Furthermore, with

the unified control plane programming, different functionalities implemented as forwarding rules can be easily

combined. For example, as we will see in Section 5.5, the seamless mobility service can be easily combined with

the multi-AP multipath data transmission for enhancing a mobile client’s QoE. Finally, being protocol-agnostic

in nature, Po-Fi is capable to support new and proprietary protocols over WiFi, therefore is “future-proof”.

19

5. Implementation and Evaluation

5.1. Prototype and Testbed

We develop two kinds of Po-Fi APs based on different hardwares. One kind of Po-Fi AP is developed on the

Netgear R6100 WiFi router with an Atheros AR9344 WiFi SoC, and we also develop Po-Fi AP by attaching

the Atheros AR9485 PCI-E WiFi NIC(s) to a PC equipped with an Intel Core i5 CPU and 4G RAM. We flash

both Router and PC with OpenWrt Chaos Calmer 15.05 [39] and the ath9k software driver [40]. We expand

the POFSwith 1.4.015 [30] software switch and run it in user space.

We develop a Po-Fi controller based on Floodlight [41], and run it on a server equipped with an Intel

Xeon E3 CPU and 8G RAM. To compare Po-Fi with regular WiFi, we also configure the router and PC into

regular APs with OpenWrt, and employ OVS for packet switching.

We build a real-world testbed composed of six APs at the fourth floor of our academic building as in Fig.

12. In our real-world experiments, we use a laptop equipped with a Realtek BGN WiFi NIC as the mobile

wireless client. We also test Po-Fi with iPhone 6 plus and Huawei P10 smartphones, and find that they are

compatible with Po-Fi without the need of any client-side modifications.

5.2. Basic Performance and Overhead

5.2.1. AP throughput

We first examine Po-Fi AP’s throughput. We program a Po-Fi AP into the infrastructure mode connected

by a client, and forwards traffic between the laptop client and a wired host. As a benchmark test, the wireless

client is close to the AP and doesn’t move. We initiate a TCP flow with iPerf, and measure the throughputs

for both the router- and the PC-based APs. We find that the PC-based AP has a throughput about 20Mbps,

while the router-based AP, which has limited computing power with its embedded processor, also achieves

a throughput over 10Mbps. Both APs have decent throughputs that suffice for most applications. In the

following experiments, we use router-based APs if not otherwise specified.

5.2.2. Client association time

We then examine the time required for a client to connect to the Po-Fi network, and compare with the

client association time in regular WiFi. We execute the nmcli command on the laptop client to instruct it

to connect to a Po-Fi AP and a regular WiFi AP, and record the client association time. For simplicity, no

authentication is involved. We repeat the experiment 10 times, and find that on average, it takes 4.84 s for the

client to connect to the Po-Fi AP, which is slightly longer than the mean association time of 4.06 s in regular

WiFi.

Po-Fi’s longer association time can be explained with the fact that the centralized WiFi management incurs

additional delay between the Po-Fi AP and the controller. However, the slightly longer time is worthwhile, as

a client can associate only once, then keeps stayed in the network by migrating its per-client VAP afterwards.

20

2.2 2.22 2.24 2.26 2.28 2.3
0

0.2

0.4

0.6

0.8

1

Interval (sec.)

C
D

F

100 clients

200 clients

300 clients

Figure 13: Distributions of intervals between first Probe Request and VAP installation with 100, 200, and 300 clients connecting

to Po-Fi in one second.

5.2.3. Scalability

We also consider the case that a large number of wireless clients simultaneously connect to a Po-Fi network.

More specifically, we generate the Probe and Associate Request frames from 100, 200, and 300 emulated clients

at a Po-Fi AP within one second, and send them to the controller. For each emulated client, we record

the interval between the time when the first Probe Request is sent out and the time that the rules of the

corresponding VAP are installed.

Fig. 13 presents the distributions of the intervals. From the figure, we can see that the intervals only

slightly vary, with the standard deviations of 8.5, 14.8, and 11.0ms for 100, 200, and 300 simultaneous clients

respectively. Moreover, when more clients connect to the Po-Fi network, the overall intervals only slightly

increase. The observation suggests that Po-Fi is scalable enough for handling many simultaneous connecting

requests.

5.3. Seamless Mobility

5.3.1. Experiment setup

We realize the seamless mobility use case as described in Section 4.1 by programming Po-Fi APs into the

infrastructure mode and implementing Algorithm 1 on the controller. For evaluating the use case, we move a

laptop mobile client in a counterclockwise order from AP1 to AP3, then to AP4 and AP5, and back to AP1 in

60 seconds. We set α = β = 0.5, ss1 = ss2 =−38dBm, ∆ =5dBm, and k = 20 in the experiment.

As discussed in Section 4.1, the client movement causes the Po-Fi APs to detect persistent WiFi signal

strength changes, and report the “client leaving”/“client approaching” events. On receiving the event reports, the

controller migrates the client’s VAP from AP1 to AP3, AP3 to AP4, AP4 to AP5, and AP5 to AP1 sequentially.

For comparison, we repeat the experiment with four regular WiFi APs at the same positions. For enabling

a naive AP handover, we run a script on the laptop client, which repeatedly scans the APs’ signal strengths,

and switches to the AP that has the strongest signal. We also compare with Odin by using Odin’s AP source

code [33], and follows the strategy in [14] to make the AP handover. We use iPerf to initiate TCP or UDP

flows from the mobile client to a wired host, and perform measurements between the two ends.

21

0 10 20 30 40 50 60
0

5

10

15

20

25

Time (sec.)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Po-Fi
Regular WiFi
Odin

Figure 14: Comparison of mobile client’s TCP throughputs in Po-Fi, regular WiFi and Odin networks.

-60

-40

R
S

S
I

(d
B

m
)

AP
1

-60

-40 AP
3

-60

-40 AP
4

0 10 20 30 40 50 60
-60

-40

Time (sec.)

AP
5

Figure 15: RSSIs perceived by the four Po-Fi APs.

5.3.2. Result

Fig. 14 presents the TCP throughputs achieved in Po-Fi, regular WiFi, and Odin networks, and in Fig. 15,

we present the RSSIs perceived by the four Po-Fi APs in the experiment. For reference, timings of the VAP

migrations are labeled on the figure. The figures suggest that RSSI is a good indication for making the VAP

migration decisions. For example, the RSSI perceived by AP1 has its peaks at the beginning and end of the

experiment, when the client is close to the AP; and the RSSIs perceived by the other three APs also reach to

their peaks when the client is approaching them, and decline when it departs away.

From Fig. 14 one can see that when the client switches its associated APs, the TCP throughput in regular

WiFi drops to zero. On the other hand, the TCP throughputs in both Po-Fi and Odin networks remain stable

all the time. This is easy to understand, as in regular WiFi, the mobile client must disconnect from its current

AP before connecting to a new one, and during the handover, all the TCP segments are lost. But in Po-Fi and

Odin networks, the client’s VAP (or LVAP in Odin) migrates to a new physical AP in a “make-before-break”

manner, and as long as the client’s VAP is functional on at least one AP, no segment will be lost. From Fig.

14, we can see that Po-Fi and Odin have throughputs that are very close to each other, and are relatively lower

comparing with a regular AP. This is because both Po-Fi and Odin process packets in user space, thus share a

same performance bottleneck, while the regular AP processes packets in kernel. However, with the PC-based

Po-Fi AP, we can achieve a much higher throughput at about 20Mbps.

To testify our point, we send a UDP flow at a constant rate of 1Mbps from the mobile client, in which

22

Figure 16: Comparison of client’s MPTCP throughputs with the case that the connection contains two subflows carried by two

APs, and the cases the connection contains one subflow on AP2 and AP3 respectively. Shaded areas indicate the intervals that

specific APs are throttled.

each packet is 1200B, and perform the VAP migration-based handover in Po-Fi and Odin as well as the naive

handover. We infer the lost packets by comparing the traces captured at the sender and receiver sides. We

repeat the experiment five times, and find that no packet is lost during a VAP migration in Po-Fi, but as many

as 385 packets are lost in a naive handover on average.

We also test how frequently a client can handoff by repeatedly migrating its VAP between two Po-Fi APs.

We find that it is possible to make the client to handoff up to 15 times in one second, suggesting that Po-Fi is

capable to handle highly dynamic clients. The experiment results indicate that, the seamless mobility service

facilitated by Po-Fi can greatly enhance a wireless client’s QoE under mobile circumstances.

5.4. Multi-AP MPTCP Data Transmission

5.4.1. Experiment setup

We program Po-Fi APs into the infrastructure mode and implement Algorithm 2 on the controller for

realizing the multi-AP MPTCP data transmission as described in Section 4.2. For enabling MPTCP on end

hosts, we compile the MultiPath TCP v0.92 protocol stack [37] in their Linux kernels, and use the stack’s

“default” scheduler that prefers subflows with shorter RTTs. In our experiment, we employ two APs, AP2 and

AP3, that work on a same channel within each other’s carrier sense range, and place a wireless client at a same

distance from each AP. Note that with the Po-Fi facilitated multi-AP MPTCP, the client only needs to have

one WiFi interface, but can employ multiple Po-Fi APs to transmit data. For emulating AP bottlenecks, we

employ tc-netem to restrict network flows from a particular AP within a specified bandwidth.

We use iPerf to initiate an MPTCP connection containing two subflows from the wireless client to a wired

host. As discussed in Section 4.2, on detecting the subflows, the controller installs the rules for the client’s

primary and secondary VAPs on AP2 and AP3 respectively, each carrying a subflow. The experiment lasts 60

seconds, during which we emulate AP bottlenecks by throttling AP2’s bandwidth to 0.5Mbps from 10 to 25 s,

and throttle AP3 from 35 to 50 s. For comparison, we disable the multi-AP MPTCP service, and repeat the

experiment twice, each time the client associates with only one AP (AP2 or AP3), and transfers data with an

MPTCP connection containing only one subflow.

23

(a) (b)

Figure 17: (a) Throughputs and (b) sequence numbers of the two MPTCP subflows under multi-APMPTCP. Shaded areas indicate

the intervals that specific APs are throttled.

5.4.2. Result

Fig. 16 presents client’s MPTCP throughputs with and without the multi-AP MPTCP service facilitated

by Po-Fi. The shaded areas indicate the intervals during which the specific APs are throttled. From the figure

we can see that with the service, bandwidth throttling only slightly influences the client’s overall MPTCP

throughput; but without the service, the throughput drops to less than 1Mbps when the client’s associated AP

gets throttled.

We explain the observation as the following. Without multi-AP MPTCP, when the client’s associated AP

is throttled, the single-flow MPTCP connection has a bottleneck. But with the service, the two subflows of

the client’s MPTCP connection are carried by two Po-Fi APs; when one AP is throttled, the MPTCP protocol

stack detects the bottleneck, and schedules the other subflow to transfer more data.

To support our point, in Fig. 17(a) we plot the throughputs of the two MPTCP subflows under the multi-AP

MPTCP service. We also present how the two subflows’ TCP sequence numbers change over time in Fig. 17(b).

From the figures we can see that the two subflows make roughly equal contributions, but when one Po-Fi AP

is throttled, the subflow carried by the other unthrottled AP grabs more transmitting capacity, and achieves a

higher throughput by increasing its sequence number more rapidly. From Fig. 16–17, we can conclude that the

multi-AP MPTCP service facilitated by Po-Fi can greatly enhance the communication reliability of a wireless

client.

5.5. Customized Service

5.5.1. Experiment setup

In this experiment, we show how we can customize a novel service by combining the use cases of seamless

mobility with multi-AP MPTCP data transmission. We compose a controller program to enable the “mo-

bility+multipath” service, which has two key features: 1) The service places a client’s MPTCP subflows on

different Po-Fi APs, with each AP carrying at most one subflow at a time; 2) It instructs the Po-Fi APs to

monitor and predict the client’s signal strengths, and migrates the client’s primary and secondary VAPs to the

Po-Fi APs that have better signal receptions. Obviously, under the customized service, a mobile client’s QoE

and reliability can be greatly enhanced.

24

Figure 18: AP bandwidth throttling and VAP migrations. The shaded area on each AP’s timeline indicates a 10-second interval

during which the Po-Fi AP is throttled, and the red squares and green triangles indicate the times when the primary and secondary

VAPs are placed at the APs respectively.

TCP MPTCP Subflow1 Subflow2

0

2

4

6

8

10

12

14

16

T
h
ro

u
g
h
p
u
t

(a)

0 20 40 60 80 100 120
0

5

10

15

20

Time (sec.)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

MPTCP in Po-Fi
TCP in regular WiFi

(b)

0

5

10

0 20 40 60 80 100 120

5

10

Time (sec.)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Subflow1

Subflow2

(c)

Figure 19: (a) Throughputs of single TCP flow, MPTCP connection, and two MPTCP subflows in boxplots; (b) comparison of

client’s MPTCP throughput in Po-Fi and TCP throughput in regular WiFi network; (c) throughputs of two MPTCP subflows.

25

0 20 40 60 80 100 120
0

5

10

15

Time (sec.)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

AP
1

AP
3

AP
4

AP
5

Figure 20: Throughputs contributed from the four Po-Fi APs over time.

For evaluating the “mobility+multipath” service, we program Po-Fi APs into the infrastructure mode, and

place them at AP1, AP3, AP4, and AP5 of the testbed. We move the laptop mobile client in a counterclockwise

order as in Section 5.3 in 120 seconds, and set up an iPerf MPTCP connection containing two subflows from the

client to a wired host. For emulating AP bottlenecks, we randomly throttle the APs’ available bandwidths to

3Mbps. Timing of the bandwidth throttling is presented in Fig. 18, where a shaded area on an AP’s timeline

indicates a 10-second interval during which the AP is throttled. For comparison, we replace Po-Fi APs with

regular WiFi APs and throttle their bandwidths as in Fig. 18, and let the mobile client to always connect

to the AP that has the strongest signal, while transmitting to the wired host with one TCP flow during its

movement.

5.5.2. Result

We repeat each experiment 5 times. We present the TCP throughput in regular WiFi, and the throughputs

of the MPTCP connection in Po-Fi as well as its two subflows in boxplots in Fig. 19(a) . We can see that

the throughputs of the TCP flow and the MPTCP subflows have large variances, but the MPTCP’s overall

throughput is quite stable.

We select one representative experiment execution, and present how the client’s throughputs in the Po-Fi

and regular WiFi networks change over time in Fig. 19(b). From the figure, we can see that in regular WiFi,

the TCP throughput fluctuates greatly. The throughput drops are caused by two factors: 1) packet losses

during the naive AP handovers initiated by the client, and 2) bandwidth throttling on the AP that the client

connects to.

On the other hand, in the Po-Fi network, the client’s throughput remains stable. Since the MPTCP

connection is composed of two subflows, we also present the throughputs of the two MPTCP subflow in Fig.

19(c), and plot in Fig. 18 how the mobile client’s primary and secondary VAPs migrate among the four Po-

Fi APs as a result of client movement. By examining the figures, we can see that although the bandwidth

throttling on the Po-Fi AP that carries a subflow can greatly reduce its throughput, however, since at most

one subflow is throttled, the MPTCP protocol stack can schedule the other subflow, which is carried by an

unthrottled AP, to transfer more data for compensation. Moreover, comparing with the naive handover, the

VAP migrations cause few packet losses. Combining these factors, the client’s overall MPTCP throughput

is maintained at about 12Mbps under the Po-Fi facilitated “mobility+multipath” service, and is much more

26

stable than the TCP throughput in the regular WiFi network.

In Fig. 20, we present the traffics transmitted by each of the four Po-Fi APs. We can see that the client’s

traffic is jointly dispatched among the four APs by our controller program and the end-end MPTCP protocol,

so that an unthrottled AP close to the mobile client is always scheduled to transmit more data than the other

APs, which is ideal for mobile wireless networks.

5.6. Smooth Remote AP Switching

5.6.1. Experiment setup

In this section, we realize and evaluate the smooth remote AP switching use case as described in Section

4.3. In particular, we use a Po-Fi AP with two monitor WiFi interfaces on different channels, program it into

the WDS mode for serving as a bridge AP, and place four regular WiFi APs as candidate remote APs at AP1,

AP3, AP4, and AP5 of the testbed. We develop a controller program that instructs the bridge AP to set up a

wireless backhaul link with a remote AP. In addition, the controller consistently monitors the signal strengths

of the Beacon frames from the remote APs, and instructs the bridge AP to switch to the AP with the strongest

signal by following the steps in Section 4.3.

In our experiment, we move the mobile bridge AP in a counterclockwise order as in Section 4.1 in 60 seconds,

and during the movement, the bridge AP is connected by the laptop wireless client that moves along with it.

We let r = 3 and δ =5dBm in the experiment. For comparison, we use a regular AP as the bridge AP, configure

its WiFi interface into the 4-address mode for setting up a WDS wireless backhaul link, and run a script to

switch its remote AP to the closest AP during its movement. In both the Po-Fi and regular WiFi networks, we

initialize a UDP flow at a constant rate of 20Mbps from the client to a wired host for measuring the end-end

throughput.

5.6.2. Result

In Fig. 21, we present the throughputs of the UDP flows that traverse the wireless backhaul links in both

the Po-Fi and regular WiFi networks. From the figure we can see that in regular WiFi, the throughput drops

to zero when the mobile bridge AP naively switches its remote AP, as it must first disconnect from its current

AP before connecting to a new one, and considerable packets are lost during the switching.

On the other hand, in the Po-Fi facilitated smooth AP switching, the throughput remains stable at about

10Mbps all the time. We explain the stable throughput with the fact that during the AP switching, the

controller instructs the mobile bridge AP to connect to a new AP before it dissociates from its current remote

AP, and with such a “make-before-break” approach, no packet shall be lost. To verify our point, we use the

method as in Section 5.3 to examine the packet losses, and find that on average, 196 packets are lost during a

naive AP switching, but we do not observe any packet loss in the Po-Fi network.

Note that although both seamless mobility and this use case achieve smooth AP switching, they are very

different. In the seamless mobility use case, the switching is accomplished by migrating VAP between Po-Fi

APs, and is transparent to client. But in this use case, the switching is initiated from the Po-Fi programmed

bridge AP that plays the client side on the wireless backhaul link, and is compatible with legacy remote APs.

27

0 10 20 30 40 50 60
0

5

10

15

Time (sec.)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Po-Fi
Regular WiFi

Figure 21: Comparison of throughputs on wireless backhaul links in Po-Fi and regular WiFi networks.

5.7. TDMA MAC Scheduling

5.7.1. Experiment setup

We realize and evaluate the TDMA MAC scheduling use case as described in Section 4.4 in this experiment.

In particular, we develop TDMA APs, and realize a Po-Fi facilitated per-flow TDMA MAC scheduling, in which

the controller can allocate time slots to specific network flows. All the APs in our experiment are developed on

PC, and we employ the Precision Time Protocol (PTP)[42] for clock synchronizing.

We place two TDMA APs at AP2 and AP6 of the testbed that are about 50m apart. The two APs have their

WiFi interfaces working on a same channel, but they are out of each other’s carrier sense range. We configure

two virtual WiFi interfaces on the laptop mobile client, each connecting to one TDMA AP. The client sets

up an MPTCP connection containing two subflows for downloading from a wired host, with each AP carrying

one subflow. The wireless client moves as the following: Initially, the client is 10m away from AP2 and moves

towards AP6, when it is 10m away from AP6, it returns back towards AP2 and eventually stops at the start

position. The movement lasts 150 seconds, during which the client downloads through AP2 and AP6 all the

time. Clearly in such an experiment setting, AP2 and AP6 are hidden terminals to each other when they are

transmitting to the mobile client.

As described in Section 4.4, in the Po-Fi facilitated TDMA MAC scheduling, the TDMA APs are pro-

grammed to measure and predict RSSIs from the overheard 802.11 frames, and report to controller every

N = 50 frames. The controller uses Equation (2) to allocate time slots to the two subflows. We divide time

into 12 time slots on the TDMA APs, with each slot lasting 20ms, and set the threshold d = 2 for updating

the time slot allocations.

For comparison, we also consider two alternative cases: In the first case, we replace TDMA APs with regular

WiFi APs, so that the two subflows contend for medium access without coordination; and in the second case,

we statically allocate 6 time slots on each TDMA AP all the time.

5.7.2. Result

We present the client’s MPTCP throughputs under 1) no TDMA, 2) static time slot allocation, and 3)

Po-Fi facilitated dynamic time slot allocation in boxplots in Fig. 22(a). From the figure we can see that

without TDMA, the throughput is very low, due to the hidden terminal problem. When TDMA is enabled,

28

No TDMA Static Dynamic
0

2

4

6

8

10

12

14

16

18

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

(a)

0 30 60 90 120 150
0

5

10

15

20

Time (sec.)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

MPTCP

Subflow1

Subflow2

(b)

0 30 60 90 120 150
0

5

10

15

20

Time (sec.)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

MPTCP

Subflow1

Subflow2

(c)

Figure 22: (a) Boxplots of MPTCP throughputs in various cases; (b) MPTCP and subflow throughputs under static time slot

allocation; (c) MPTCP and subflow throughputs under dynamic time slot allocation.

the throughput is much higher, as the two subflows no longer contend for medium access, but transmit in their

own time slots. Moreover, with the Po-Fi facilitated dynamic allocation, the client’s throughput is higher and

more stable than the one under the static allocation.

In Fig. 22(b) and (c), we present how the throughputs of the MPTCP connections, as well as their subflows,

change over time under the static and dynamic time slot allocations respectively. From the figures we can see

that, with the static allocation, the overall MPTCP throughput drops when the client is close to one AP but

far away from the other. On the other hand, with the Po-Fi facilitated TDMA MAC scheduling, the controller

dynamically revokes time slots from the AP that has a poor signal reception, and allocates them to the AP that

can better transmit the data, thus achieves a higher and more stable MPTCP throughput for the mobile client.

The experiment suggests that Po-Fi is highly flexible to provide programming interface for novel functionalities

at lower layers in WiFi.

6. Conclusion

In this paper, we presented Po-Fi, a software-definedWiFi network architecture. Different from the previous

NFV-based solutions, Po-Fi follows the SDN consensus by abstracting WiFi AP as a programmable forwarding

pipeline, thus is more flexible and provides a rich and unified programmability for realizing innovations on WiFi

networks. We discussed a wide range of use cases facilitated by Po-Fi, and described their realization details.

We implemented a Po-Fi prototype with commodity hardware, and evaluated the use cases with real-world

testbed. Experiment results showed that the Po-Fi facilitated innovations can effectively overcome WiFi’s

inherited deficiencies and improve the wireless services.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants

61672486 and 61672485, and in part by the Strategic Priority Research Program of the Chinese Academy of

Sciences under Grant XDC02070300.

References

[1] Cisco visual networking index: Forecast and trends, 2017-2022, White paper, Cisco (Feb. 2019).

29

[2] B. Dezfouli, V. Esmaeelzadeh, J. Sheth, M. Radi, A review of software-defined WLANs: Architectures and

central control mechanisms, IEEE Commun. Surveys Tuts. 21 (1) (2019) 431–462.

[3] OpenFlow switch specification version 1.5.1, Standard ONF TS-025, Open Networking Foundation (Mar.

2015).

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, D. Walker, P4: Programming protocol-independent packet processors, ACM SIGCOMM

Computer Communication Review 44 (3) (2014) 87–95.

[5] H. Song, Protocol-oblivious forwarding: unleash the power of SDN through a future-proof forwarding

plane, in: Proc. of ACM SIGCOMM HotSDN’13, Hong Kong, China, 2013.

[6] P. Lu, L. Zhang, X. Liu, J. Yao, Z. Zhu, Highly-efficient data migration and backup for big data applications

in elastic optical inter-datacenter networks, IEEE Netw. 29 (2015) 36–42.

[7] L. Gong, Z. Zhu, Virtual optical network embedding (VONE) over elastic optical networks, J. Lightw.

Technol. 32 (2014) 450–460.

[8] S. Tang, B. Hua, Increasing multicast transmission rate with localized multipath in software-defined net-

works, Front. Comput. Sci. 13 (2019) 413–425.

[9] The world’s fastest & most programmable networks, White paper, Barefoot.

[10] Programming Netronome Agilio SmartNICs, White Paper WP-NFP-Prog-Model-7/18, Netronome Sys-

tems (2018).

[11] hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS authenticator, https://w1.fi/

hostapd/, accessed: May. 25, 2020.

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek, The click modular router, ACM Trans. on

Computer Systems 18 (3) (2000) 263–297.

[13] J. Vestin, P. Dely, A. Kassler, N. Bayer, H. Einsiedler, C. Peylo, CloudMAC: Towards software defined

WLANs, ACM SIGMOBILE Mobile Computing & Communication Review 16 (4) (2012) 42–45.

[14] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, R. Merz, Programmatic orchestration of

WiFi networks, in: Proc. of USENIX ATC’14, Philadelphia, PA, USA, 2014.

[15] C. Xu, W. Jin, G. Zhao, H. Tianfield, S. Yu, Y. Qu, A novel multipath-transmission supported software

defined wireless network architecture, IEEE Access 5 (2017) 2111–2125.

[16] IEEE 802.11 part 11: Wireless LAN MAC and PHY specifications, Ieee standard, IEEE (Dec. 2016).

[17] M. Yan, J. Casey, P. Shome, A. Sprintson, A. Sutton, Ætherflow: Principled wireless support in SDN, in:

Proc. of IEEE ICNP’16, Nov., 2016.

30

[18] E. Coronado, S. N. Khan, R. Riggio, 5G-EmPOWER: A software-defined networking platform for 5g radio

access networks, IEEE Trans. Netw. and Service Manag. 16 (2) (2019) 715–728.

[19] R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, T. Rasheed, Programming abstractions for

software-defined wireless networks, IEEE Trans. Netw. and Service Manag. 12 (2) (2015) 146–162.

[20] Meru technical note - what is shared BSSID and per-station BSSID?, https://kb.fortinet.com/kb/

documentLink.do?externalID=FD37783, accessed: May. 25, 2020.

[21] Y. Yiakoumis, M. Bansal, A. Covington, J. van Reijendam, S. Katti, N. McKeown, BeHop: A testbed for

dense WiFi networks, in: Proc. of WiNTECH’14, Maui, HI, USA, 2014.

[22] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan, N. Handigol, N. McKeown, G. Parulkar,

Blueprint for introducing innovation into wireless mobile networks, in: Proc. of ACM SIGCOMM VISA’10,

New Delhi, India, 2010.

[23] E. Zeljkovic, J. M. Marquez-Barja, A. Kassler, R. Riggio, S. Latré, Proactive access point driven handovers

in IEEE 802.11 networks, in: Proc. of CNSM’18, Rome, Italy, 2018.

[24] A. Croitoru, D. Niculescu, C. Raiciu, Towards WiFi mobility without fast handover, in: Proc. of USENIX

NSDI’15, Oakland, CA, USA, 2015.

[25] M. R. Palash, K. Chen, MPWiFi: Synergizing MPTCP based simultaneous multipath access and WiFi

network performance, IEEE Trans. Mobile Comput. 19 (1) (2020) 142–158.

[26] C. Xu, W. Jin, X. Wang, G. Zhao, S. Yu, MC-VAP: A multi-connection virtual access point for high

performance software-defined wireless networks, J. Netw. Comput. Appl 122 (2018) 88–98.

[27] P. Djukic, P. Mohapatra, Soft-TDMAC: A software-based 802.11 overlay TDMA MAC with microsecond

synchronization, IEEE Trans. Mobile Comput. 11 (3) (2012) 478–491.

[28] Z. Yang, J. Zhang, K. Tan, Q. Zhang, Y. Zhang, Enabling TDMA for today’s wireless lans, in: Proc. of

IEEE INFOCOM’15, Hong Kong, China, 2015.

[29] S. Zehl, A. Zubow, A. Wolisz, hMAC: Enabling hybrid TDMA/CSMA on IEEE 802.11 hardware, Technical

Report TKN-16-004, Technische Universität Berlin (Nov. 2016).

[30] Protocol Oblivious Forwarding projects, https://github.com/ProtocolObliviousForwarding, accessed:

May. 25, 2020.

[31] X. Wang, Y. Tian, M. Zhao, M. Li, L. Mei, X. Zhang, PNPL: Simplifying programming for protocol-

oblivious SDN networks, Computer Networks 147 (2018) 64–80.

[32] M. Li, X. Wang, H. Tong, T. Liu, Y. Tian, SPARC: Towards a scalable distributed control plane architec-

ture for protocol-oblivious SDN networks, in: Proc. of ICCCN’19, Valencia, Spain, 2019.

31

[33] Wi-5 project, https://github.com/Wi5, accessed: May. 25, 2020.

[34] P. Goodwin, The Holt-Winters approach to exponential smoothing: 50 years old and going strong, FORE-

SIGHT 19 (2010) 30–33.

[35] S. Sundaresan, N. Feamster, R. Teixeira, Locating throughput bottlenecks in home networks, ACM SIG-

COMM Comp. Comm. Rev. 44 (4) (2014) 351–352.

[36] C. Paasch, O. Bonaventure, Multipath tcp, Communications of the ACM 57 (4) (2014) 51–57.

[37] C. Paasch, S. Barre, MultiPath TCP - Linux Kernel implementation, https://multipath-tcp.org, ac-

cessed: May. 25, 2020.

[38] V. Mhatre, K. Papagiannaki, Using smart triggers for improved user performance in 802.11 wireless net-

works, in: Proc. of MobiSys’06, Uppsala, Sweden, 2006.

[39] OpenWrt 15.05.1, https://openwrt.org/releases/15.05/start, accessed: May. 25, 2020.

[40] ath9k wireless driver, https://wireless.wiki.kernel.org/en/users/drivers/ath9k, accessed: May.

25, 2020.

[41] Floodlight OpenFlow controller, http://www.projectfloodlight.org/floodlight/, accessed: May. 25,

2020.

[42] IEEE standard for a precision clock synchronization protocol for networked measurement and control

systems, Ieee standard, IEEE (Jul. 2008).

32

