# Principles of Program Analysis: 

## Abstract Interpretation

Transparencies based on Chapter 4 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag 2005. ©Flemming Nielson \& Hanne Riis Nielson \& Chris Hankin.

## A Mundane Approach to Semantic Correctness

Semantics:

$$
p \vdash v_{1} \leadsto v_{2}
$$

where $v_{1}, v_{2} \in V$.
Note: $\sim$ might be deterministic.

Program analysis:

$$
p \vdash l_{1} \triangleright l_{2}
$$

where $l_{1}, l_{2} \in L$.
Note: $\triangleright$ should be deterministic:

$$
f_{p}\left(l_{1}\right)=l_{2}
$$

What is the relationship between the semantics and the analysis?

Restrict attention to analyses where properties directly describe sets of values i.e. "first-order"" analyses (rather than "second-order" analyses).

## Example: Data Flow Analysis

Structural Operational Constant Propagation Analysis:
Semantics:

Values: $V=$ State

Transitions:
iff

$$
S_{\star} \vdash \sigma_{1} \leadsto \sigma_{2}
$$

$$
\left\langle S_{\star}, \sigma_{1}\right\rangle \rightarrow^{*} \sigma_{2}
$$

Properties: $L=\widehat{\text { State }}_{C P}=\left(\operatorname{Var}_{\star} \rightarrow \mathbf{Z}^{\top}\right)_{\perp}$
Transitions:

$$
S_{\star} \vdash \widehat{\sigma}_{1} \triangleright \widehat{\sigma}_{2}
$$

iff

$$
\begin{aligned}
& \widehat{\sigma}_{1}=\iota \\
& \widehat{\sigma}_{2}=\sqcup\left\{\mathrm{CP}_{\bullet}(\ell) \mid \ell \in \text { final }\left(S_{\star}\right)\right\} \\
& \left(\mathrm{CP}_{\circ}, \mathrm{CP}_{\bullet}\right) \models \mathrm{CP}=\left(S_{\star}\right)
\end{aligned}
$$

## Example: Control Flow Analysis

| Structural Operational | Pure 0-CFA Analysis: |
| :--- | :--- |
| Semantics: | Properties: $L=\widehat{\operatorname{Env}} \times \widehat{\text { Val }}$ |

Values: $V=$ Val
Transitions:
Transitions:

$$
e_{\star} \vdash\left(\hat{\rho}_{1}, \widehat{v}_{1}\right) \triangleright\left(\hat{\rho}_{2}, \widehat{v}_{2}\right)
$$

iff

$$
\begin{aligned}
& \widehat{\mathrm{C}}\left(\ell_{1}\right)=\widehat{v}_{1} \\
& \widehat{\mathrm{C}}\left(\ell_{2}\right)=\widehat{v}_{2} \\
& \widehat{\rho}_{1}=\widehat{\rho}_{2}=\widehat{\rho} \\
& (\widehat{\mathrm{C}}, \widehat{\rho})=\left(e_{\star} c^{\ell_{1}}\right)^{\ell_{2}}
\end{aligned}
$$

for some place holder constant c

## Correctness Relations

$$
R: V \times L \rightarrow\{\text { true, false }\}
$$

Idea: $v R l$ means that the value $v$ is described by the property $l$.

Correctness criterion: $R$ is preserved under computation:

| $p$ | $\vdash$ | $v_{1}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $v_{2}$ |  |
|  |  |  |  | $\vdots$ |
|  |  |  |  |  |
| $p$ | $\vdash$ | $l_{1}$ | $\triangleright$ | $R$ |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

logical relation:
$(p \vdash \cdot \sim \cdot)(R \rightarrow R)(p \vdash \cdot \triangleright \cdot)$

## Admissible Correctness Relations

$$
\begin{aligned}
v R l_{1} \wedge l_{1} \sqsubseteq l_{2} & \Rightarrow v R l_{2} \\
\left(\forall l \in L^{\prime} \subseteq L: v R l\right) & \Rightarrow v R\left(\square L^{\prime}\right) \quad(\{l \mid v R l\} \text { is a Moore family })
\end{aligned}
$$

Two consequences:

$$
\begin{gathered}
v R \top \\
v R l_{1} \wedge v R l_{2} \Rightarrow v R\left(l_{1} \sqcap l_{2}\right)
\end{gathered}
$$

Assumption: $(L, \sqsubseteq)$ is a complete lattice.

## Example: Data Flow Analysis

Correctness relation

$$
R_{\mathrm{CP}}: \text { State } \times \widehat{\text { State }}_{\mathrm{CP}} \rightarrow\{\text { true }, \text { false }\}
$$

is defined by

$$
\sigma R_{\mathrm{CP}} \widehat{\sigma} \text { iff } \forall x \in F V\left(S_{\star}\right):(\widehat{\sigma}(x)=\top \vee \sigma(x)=\widehat{\sigma}(x))
$$

## Example: Control Flow Analysis

Correctness relation

$$
R_{\text {CFA }}: \text { Val } \times(\widehat{\mathbf{E n v}} \times \widehat{\text { Val }}) \rightarrow\{\text { true }, \text { false }\}
$$

is defined by

$$
v R_{\mathrm{CFA}}(\hat{\rho}, \widehat{v}) \text { iff } v \mathcal{V}(\hat{\rho}, \widehat{v})
$$

where $\mathcal{V}$ is given by:
$v \mathcal{V}(\widehat{\rho}, \widehat{v})$ iff $\begin{cases}\operatorname{true} & \text { if } v=c \\ t \in \widehat{v} \wedge \forall x \in \operatorname{dom}(\rho): \rho(x) \mathcal{V}(\widehat{\rho}, \widehat{\rho}(x)) & \text { if } v=\operatorname{close} t \text { in } \rho\end{cases}$

## Representation Functions

$$
\beta: V \rightarrow L
$$

Idea: $\beta$ maps a value to the best property describing it.

Correctness criterion:


## Equivalence of Correctness Criteria

Given a representation function $\beta$ we define a correctness relation $R_{\beta}$ by

$$
v R_{\beta} l \text { iff } \beta(v) \sqsubseteq l
$$

Given a correctness relation $R$ we define a representation function $\beta_{R}$ by

$$
\beta_{R}(v)=\prod\{l \mid v R l\}
$$

## Lemma:

(i) Given $\beta: V \rightarrow L$, then the relation $R_{\beta}: V \times L \rightarrow\{$ true, false $\}$ is an admissible correctness relation such that $\beta_{R_{\beta}}=\beta$.
(ii) Given an admissible correctness relation $R: V \times L \rightarrow\{$ true, false $\}$, then $\beta_{R}$ is well-defined and $R_{\beta_{R}}=R$.

## Equivalence of Criteria: $R$ is generated by $\beta$



## Example: Data Flow Analysis

Representation function

$$
\beta_{\mathrm{CP}}: \text { State } \rightarrow \widehat{\text { State }}_{\mathrm{CP}}
$$

is defined by

$$
\beta_{\mathrm{CP}}(\sigma)=\lambda x . \sigma(x)
$$

$R_{\mathrm{CP}}$ is generated by $\beta_{\mathrm{CP}}$ :

$$
\sigma R_{\mathrm{CP}} \hat{\sigma} \quad \text { iff } \quad \beta_{\mathrm{CP}}(\sigma) \sqsubseteq \mathrm{CP} \hat{\sigma}
$$

## Example: Control Flow Analysis

Representation function

$$
\beta_{\mathrm{CFA}}: \mathbf{V a l} \rightarrow \widehat{\mathbf{E n v}} \times \widehat{\mathrm{Val}}
$$

is defined by

$$
\begin{gathered}
\beta_{\mathrm{CFA}}(v)= \begin{cases}(\lambda x . \emptyset, \emptyset) & \text { if } v=c \\
\left(\beta_{\mathrm{CFA}}^{E}(\rho),\{t\}\right) & \text { if } v=\text { close } t \text { in } \rho\end{cases} \\
\beta_{\mathrm{CFA}}^{E}(\rho)(x)=\bigcup\left\{\widehat{\rho}_{y}(x) \mid \beta_{\mathrm{CFA}}(\rho(y))=\left(\widehat{\rho}_{y}, \widehat{v}_{y}\right) \text { and } y \in \operatorname{dom}(\rho)\right\} \\
\cup \begin{cases}\left\{\widehat{v}_{x}\right\} & \text { if } x \in \operatorname{dom}(\rho) \text { and } \beta_{\mathrm{CFA}}(\rho(x))=\left(\widehat{\rho}_{x}, \widehat{v}_{x}\right) \\
\emptyset & \text { otherwise }\end{cases}
\end{gathered}
$$

$R_{\text {CFA }}$ is generated by $\beta_{\text {CFA }}$ :

$$
v R_{\text {CFA }}(\widehat{\rho}, \widehat{v}) \quad \text { iff } \quad \beta_{\text {CFA }}(v) \sqsubseteq \mathrm{CFA}(\widehat{\rho}, \widehat{v})
$$

## A Modest Generalisation

Semantics:
$\begin{aligned} & p \vdash v_{1} \leadsto v_{2} \\ & \text { Where } v_{1} \in V_{1}, v_{2} \in V_{2}\end{aligned}$

| $p$ | $\vdash$ | $v_{1}$ | $\leadsto$ | $v_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\vdots$ |  | $\vdots$ |
|  |  | $R_{1}$ | $\Rightarrow$ | $R_{2}$ |
|  |  | $\vdots$ |  | $\vdots$ |
| $p$ | $\vdash$ | $l_{1}$ | $\triangleright$ | $l_{2}$ |

Program analysis:

$$
\begin{array}{r}
p \vdash l_{1} \triangleright l_{2} \\
\text { where } l_{1} \in L_{1}, l_{2} \in L_{2}
\end{array}
$$

## logical relation:

$(p \vdash \cdot \sim \cdot)\left(R_{1} \rightarrow R_{2}\right)(p \vdash \cdot \triangleright \cdot)$

## Higher-Order Formulation

Assume that

- $R_{1}$ is an admissible correctness relation for $V_{1}$ and $L_{1}$ that is generated by the representation function $\beta_{1}: V_{1} \rightarrow L_{1}$
- $R_{2}$ is an admissible correctness relation for $V_{2}$ and $L_{2}$ that is generated by the representation function $\beta_{2}: V_{2} \rightarrow L_{2}$

Then the relation $R_{1} \rightarrow R_{2}$ is an admissible correctness relation for $V_{1} \rightarrow V_{2}$ and $L_{1} \rightarrow L_{2}$ that is generated by the representation function $\beta_{1} \rightarrow \beta_{2}$ defined by

$$
\left(\beta_{1} \rightarrow \beta_{2}\right)(\leadsto)=\lambda l_{1} \cdot \bigsqcup\left\{\beta_{2}\left(v_{2}\right) \mid \beta_{1}\left(v_{1}\right) \sqsubseteq l_{1} \wedge v_{1} \leadsto v_{2}\right\}
$$

## Example:

Semantics:
plus $\vdash\left(z_{1}, z_{2}\right) \leadsto z_{1}+z_{2}$
where $z_{1}, z_{2} \in \mathbf{Z}$

Program analysis:
plus $\vdash Z Z \triangleright\left\{z_{1}+z_{2} \mid\left(z_{1}, z_{2}\right) \in Z Z\right\}$
where $\mathbf{Z Z} \subseteq \mathbf{Z} \times \mathbf{Z}$

## Correctness relations

result

$$
R_{\text {Z }}
$$

## Representation functions

$$
\beta_{Z}(z)=\{z\}
$$

$$
R_{Z \times Z}
$$

$$
\beta_{Z \times Z}\left(z_{1}, z_{2}\right)=\left\{\left(z_{1}, z_{2}\right)\right\}
$$

$$
(\text { plus } \vdash \cdot \leadsto \cdot)
$$

plus

$$
\begin{aligned}
& \left(R_{\text {Z } \times \mathrm{Z}} \rightarrow R_{Z}\right) \\
& \quad(\text { plus } \vdash \cdot \triangleright \cdot)
\end{aligned}
$$

## Approximation of Fixed Points

- Fixed points
- Widening
- Narrowing

Example: lattice of intervals for Array Bound Analysis

The complete lattice Interval $=($ Interval, $\sqsubseteq)$


## Fixed points

Let $f: L \rightarrow L$ be a monotone function on a complete lattice $L=(L, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$.
$l$ is a fixed point iff $f(l)=l$

$$
\operatorname{Fix}(f)=\{l \mid f(l)=l\}
$$

$f$ is reductive at $l$ iff $f(l) \sqsubseteq l$

$$
\operatorname{Red}(f)=\{l \mid f(l) \sqsubseteq l\}
$$

$f$ is extensive at $l$ iff $f(l) \sqsupseteq l$

$$
E x t(f)=\{l \mid f(l) \sqsupseteq l\}
$$

Tarski's Theorem ensures that

$$
\begin{aligned}
& \operatorname{Ifp}(f)=\prod F i x(f)=\Pi \operatorname{Red}(f) \in F i x(f) \subseteq \operatorname{Red}(f) \\
& \operatorname{gfp}(f)=\sqcup F i x(f)=\sqcup \operatorname{Ext}(f) \in F i x(f) \subseteq \operatorname{Ext}(f)
\end{aligned}
$$

Fixed points of $f$


## Widening Operators

Problem: We cannot guarantee that $\left(f^{n}(\perp)\right)_{n}$ eventually stabilises nor that its least upper bound necessarily equals $\operatorname{Ifp}(f)$.

Idea: We replace $\left(f^{n}(\perp)\right)_{n}$ by a new sequence $\left(f_{\nabla}^{n}\right)_{n}$ that is known to eventually stabilise and to do so with a value that is a safe (upper) approximation of the least fixed point.

The new sequence is parameterised on the widening operator $\nabla$ : an upper bound operator satisfying a finiteness condition.

## Upper bound operators

ஏ: $L \times L \rightarrow L$ is an upper bound operator iff

$$
l_{1} \sqsubseteq l_{1} \sqsubseteq l_{2} \sqsupseteq l_{2}
$$

for all $l_{1}, l_{2} \in L$.

Let $\left(l_{n}\right)_{n}$ be a sequence of elements of $L$. Define the sequence $\left(l_{n}^{\breve{\square}}\right)_{n}$ by:

$$
l_{n}^{\breve{\square}}= \begin{cases}l_{n} & \text { if } n=0 \\ l_{n-1}^{\square} \sqcup l_{n} & \text { if } n>0\end{cases}
$$

Fact: If $\left(l_{n}\right)_{n}$ is a sequence and $\square$ is an upper bound operator then $\left(l_{n}^{\breve{\breve{u}}}\right)_{n}$ is an ascending chain; furthermore $l_{n}^{\breve{\square}} \sqsupseteq \sqcup\left\{l_{0}, l_{1}, \cdots, l_{n}\right\}$ for all $n$.

## Example:

Let int be an arbitrary but fixed element of Interval.

An upper bound operator:

$$
\text { int }_{1} \square^{\text {int }} \text { int }_{2}= \begin{cases}i n t_{1} \sqcup i n t_{2} & \text { if int } 1_{1} \sqsubseteq \text { int } \vee \text { int }_{2} \sqsubseteq i n t_{1} \\ {[-\infty, \infty]} & \text { otherwise }\end{cases}
$$

Example: $[1,2] ธ^{[0,2]}[2,3]=[1,3]$ and $[2,3] ธ^{[0,2]}[1,2]=[-\infty, \infty]$.

$$
\begin{array}{ll}
\text { Transformation of: } & {[0,0],[1,1],[2,2],[3,3],[4,4],[5,5], \cdots} \\
\text { If int }=[0, \infty]: & {[0,0],[0,1],[0,2],[0,3],[0,4],[0,5], \cdots} \\
\text { If int }=[0,2]: & {[0,0],[0,1],[0,2],[0,3],[-\infty, \infty],[-\infty, \infty], \cdots}
\end{array}
$$

## Widening operators

An operator $\nabla: L \times L \rightarrow L$ is a widening operator iff

- it is an upper bound operator, and
- for all ascending chains $\left(l_{n}\right)_{n}$ the ascending chain $\left(l_{n}^{\nabla}\right)_{n}$ eventually stabilises.


## Widening operators

Given a monotone function $f: L \rightarrow L$ and a widening operator $\nabla$ define the sequence $\left(f_{\nabla}^{n}\right)_{n}$ by

$$
f_{\nabla}^{n}= \begin{cases}\perp & \text { if } n=0 \\ f_{\nabla}^{n-1} & \text { if } n>0 \wedge f\left(f_{\nabla}^{n-1}\right) \sqsubseteq f_{\nabla}^{n-1} \\ f_{\nabla}^{n-1} \nabla f\left(f_{\nabla}^{n-1}\right) & \text { otherwise }\end{cases}
$$

One can show that:

- $\left(f_{\nabla}^{n}\right)_{n}$ is an ascending chain that eventually stabilises
- it happens when $f\left(f_{\nabla}^{m}\right) \sqsubseteq f_{\nabla}^{m}$ for some value of $m$
- Tarski's Theorem then gives $f_{\nabla}^{m} \sqsupseteq \operatorname{Ifp}(f)$

$$
I f p_{\nabla}(f)=f_{\nabla}^{m}
$$

The widening operator $\nabla$ applied to $f$


$$
\begin{aligned}
& f_{\nabla}^{m}=f_{\nabla}^{m+1}=l f p_{\nabla}(f) \\
& f_{\nabla}^{m-1} \\
& \quad \vdots \\
& f_{\nabla}^{2} \\
& f_{\nabla}^{1} \\
& f_{\nabla}^{0}=\perp
\end{aligned}
$$

## Example:

Let $K$ be a finite set of integers, e.g. the set of integers explicitly mentioned in a given program.

We shall define a widening operator $\nabla$ based on $K$.

Idea: $\left[z_{1}, z_{2}\right] \nabla\left[z_{3}, z_{4}\right]$ is

$$
\left[\operatorname{LB}\left(z_{1}, z_{3}\right), \cup \mathrm{UB}\left(z_{2}, z_{4}\right)\right]
$$

where

- $\operatorname{LB}\left(z_{1}, z_{3}\right) \in\left\{z_{1}\right\} \cup K \cup\{-\infty\}$ is the best possible lower bound, and
- $\operatorname{UB}\left(z_{2}, z_{4}\right) \in\left\{z_{2}\right\} \cup K \cup\{\infty\}$ is the best possible upper bound.

The effect: a change in any of the bounds of the interval [ $z_{1}, z_{2}$ ] can only take place finitely many times - corresponding to the cardinality of $K$.

## Example (cont.) - formalisation:

Let $z_{i} \in \mathbf{Z}^{\prime}=\mathbf{Z} \cup\{-\infty, \infty\}$ and write:

$$
\begin{aligned}
\operatorname{LB}_{K}\left(z_{1}, z_{3}\right) & = \begin{cases}z_{1} & \text { if } z_{1} \leq z_{3} \\
k & \text { if } z_{3}<z_{1} \wedge k=\max \left\{k \in K \mid k \leq z_{3}\right\} \\
-\infty & \text { if } z_{3}<z_{1} \wedge \forall k \in K: z_{3}<k\end{cases} \\
\mathrm{UB}_{K}\left(z_{2}, z_{4}\right) & = \begin{cases}z_{2} & \text { if } z_{4} \leq z_{2} \\
k & \text { if } z_{2}<z_{4} \wedge k=\min \left\{k \in K \mid z_{4} \leq k\right\} \\
\infty & \text { if } z_{2}<z_{4} \wedge \forall k \in K: k<z_{4}\end{cases}
\end{aligned}
$$

$\operatorname{int}_{1} \nabla i n t_{2}=\left\{\begin{array}{l}\perp \quad \text { if } i n t_{1}=i n t_{2}=\perp \\ {\left[\begin{array}{l}\operatorname{LB}_{K}\left(\inf \left(i n t_{1}\right), \inf \left(i n t_{2}\right)\right) \\ \text { otherwise }\end{array}, \quad \operatorname{UB}_{K}\left(\sup \left(i n t_{1}\right), \sup \left(i n t_{2}\right)\right)\right]}\end{array}\right.$

## Example (cont.):

Consider the ascending chain $\left(i n t_{n}\right)_{n}$

$$
[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7], \cdots
$$

and assume that $K=\{3,5\}$.

Then $\left(i n t_{n}^{\nabla}\right)_{n}$ is the chain

$$
[0,1],[0,3],[0,3],[0,5],[0,5],[0, \infty],[0, \infty], \cdots
$$

which eventually stabilises.

## Narrowing Operators

Status: Widening gives us an upper approximation $I f p_{\nabla}(f)$ of the least fixed point of $f$.

Observation: $f\left(I f p_{\nabla}(f)\right) \sqsubseteq I f p_{\nabla}(f)$ so the approximation can be improved by considering the iterative sequence $\left(f^{n}\left(I f p_{\nabla}(f)\right)\right)_{n}$.

It will satisfy $f^{n}\left(I f p_{\nabla}(f)\right) \sqsupseteq I f p(f)$ for all $n$ so we can stop at an arbitrary point.

The notion of narrowing is one way of encapsulating a termination criterion for the sequence.

## Narrowing

An operator $\triangle: L \times L \rightarrow L$ is a narrowing operator iff

- $l_{2} \sqsubseteq l_{1} \Rightarrow l_{2} \sqsubseteq\left(l_{1} \triangle l_{2}\right) \sqsubseteq l_{1}$ for all $l_{1}, l_{2} \in L$, and
- for all descending chains $\left(l_{n}\right)_{n}$ the sequence $\left(l_{n}\right)_{n}$ eventually stabilises.

Recall: The sequence $\left(l_{n}^{\triangle}\right)_{n}$ is defined by:

$$
l_{n}^{\triangle}= \begin{cases}l_{n} & \text { if } n=0 \\ l_{n-1}^{\triangle} \triangle l_{n} & \text { if } n>0\end{cases}
$$

## Narrowing

We construct the sequence $\left([f]_{\Delta}^{n}\right)_{n}$

$$
[f]_{\Delta}^{n}= \begin{cases}I f p_{\nabla}(f) & \text { if } n=0 \\ {[f]_{\triangle}^{n-1} \triangle f\left([f]_{\triangle}^{n-1}\right)} & \text { if } n>0\end{cases}
$$

One can show that:

- $\left([f]_{\Delta}^{n}\right)_{n}$ is a descending chain where all elements satisfy $\operatorname{lfp}(f) \sqsubseteq[f]_{\Delta}^{n}$
- the chain eventually stabilises so $[f]_{\Delta}^{m^{\prime}}=[f]_{\triangle}^{m^{\prime}+1}$ for some value $m^{\prime}$

$$
\operatorname{Ifp} \stackrel{\rightharpoonup}{\nabla}(f)=[f]_{\triangle}^{m^{\prime}}
$$

The narrowing operator $\triangle$ applied to $f$


## Example:

The complete lattice (Interval, $\sqsubseteq$ ) has two kinds of infinite descending chains:

- those with elements of the form $[-\infty, z], z \in \mathbf{Z}$
- those with elements of the form $[z, \infty], z \in \mathbf{Z}$

Idea: Given some fixed non-negative number $N$ the narrowing operator $\Delta_{N}$ will force an infinite descending chain

$$
\left[z_{1}, \infty\right],\left[z_{2}, \infty\right],\left[z_{3}, \infty\right], \cdots
$$

(where $z_{1}<z_{2}<z_{3}<\cdots$ ) to stabilise when $z_{i}>N$

Similarly, for a descending chain with elements of the form $\left[-\infty, z_{i}\right]$ the narrowing operator will force it to stabilise when $z_{i}<-N$

## Example (cont.) - formalisation:

Define $\triangle=\triangle_{N}$ by

$$
\text { int }_{1} \triangle i n t_{2}= \begin{cases}\perp & \text { if int } \text { in }_{1} \perp \vee \vee \text { int }_{2}=\perp \\ {\left[z_{1}, z_{2}\right]} & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& z_{1}= \begin{cases}\inf \left(i n t_{1}\right) & \text { if } N<\inf \left(i n t_{2}\right) \wedge \sup \left(i n t_{2}\right)=\infty \\
\inf \left(i n t_{2}\right) & \text { otherwise }\end{cases} \\
& z_{2}= \begin{cases}\sup \left(i n t_{1}\right) & \text { if } \inf \left(i n t_{2}\right)=-\infty \wedge \sup \left(i n t_{2}\right)<-N \\
\sup \left(i n t_{2}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

## Example (cont.):

Consider the infinite descending chain $([n, \infty])_{n}$

$$
[0, \infty],[1, \infty],[2, \infty],[3, \infty],[4, \infty],[5, \infty], \cdots
$$

and assume that $N=3$.

Then the narrowing operator $\Delta_{N}$ will give the sequence $\left([n, \infty]^{\Delta}\right)_{n}$

$$
[0, \infty],[1, \infty],[2, \infty],[3, \infty],[3, \infty],[3, \infty], \cdots
$$

## Galois Connections

- Galois connections and adjunctions
- Extraction functions
- Galois insertions
- Reduction operators


## Galois connections


$\alpha$ : abstraction function
$\gamma$ : concretisation function
is a Galois connection if and only if

$$
\alpha \text { and } \gamma \text { are monotone functions }
$$

that satisfy

$$
\begin{aligned}
\gamma \circ \alpha & \sqsupseteq \lambda l . l \\
\alpha \circ \gamma & \sqsubseteq \lambda m . m
\end{aligned}
$$

Galois connections


## Example:

Galois connection

$$
\left(\mathcal{P}(\mathbf{Z}), \alpha_{Z \mathrm{I}}, \gamma_{\mathrm{ZI}}, \text { Interval }\right)
$$

with concretisation function

$$
\gamma_{\mathrm{ZI}}(i n t)=\{z \in \mathbf{Z} \mid \inf (i n t) \leq z \leq \sup (i n t)\}
$$

and abstraction function

$$
\alpha_{Z \mathrm{I}}(Z)= \begin{cases}\perp & \text { if } Z=\emptyset \\ {\left[\inf ^{\prime}(Z), \sup ^{\prime}(Z)\right]} & \text { otherwise }\end{cases}
$$

Examples:

$$
\begin{aligned}
\gamma_{\mathrm{ZI}}([0,3]) & =\{0,1,2,3\} \\
\gamma_{\mathrm{ZI}}([0, \infty]) & =\{z \in \mathrm{Z} \mid z \geq 0\} \\
\alpha_{\mathrm{ZI}}(\{0,1,3\}) & =[0,3] \\
\alpha_{\mathrm{ZI}}(\{2 * z \mid z>0\}) & =[2, \infty]
\end{aligned}
$$

## Adjunctions

$$
L \underset{\alpha}{\stackrel{\gamma}{\sim}} M
$$

is an adjunction if and only if

$$
\alpha: L \rightarrow M \text { and } \gamma: M \rightarrow L \text { are total functions }
$$

that satisfy

$$
\alpha(l) \sqsubseteq m \quad \underline{\text { iff }} \quad l \sqsubseteq \gamma(m)
$$

for all $l \in L$ and $m \in M$.

Proposition: $(\alpha, \gamma)$ is an adjunction iff it is a Galois connection.

## Galois connections from representation functions

A representation function $\beta: V \rightarrow L$ gives rise to a Galois connection

$$
(\mathcal{P}(V), \alpha, \gamma, L)
$$

where

$$
\begin{aligned}
\alpha\left(V^{\prime}\right) & =\sqcup\left\{\beta(v) \mid v \in V^{\prime}\right\} \\
\gamma(l) & =\{v \in V \mid \beta(v) \sqsubseteq l\}
\end{aligned}
$$

for $V^{\prime} \subseteq V$ and $l \in L$.

This indeed defines an adjunction:

$$
\begin{aligned}
\alpha\left(V^{\prime}\right) \sqsubseteq l & \Leftrightarrow \bigsqcup\left\{\beta(v) \mid v \in V^{\prime}\right\} \sqsubseteq l \\
& \Leftrightarrow \forall v \in V^{\prime}: \beta(v) \sqsubseteq l \\
& \Leftrightarrow V^{\prime} \subseteq \gamma(l)
\end{aligned}
$$

## Galois connections from extraction functions

An extraction function

$$
\eta: V \rightarrow D
$$

maps the values of $V$ to their best descriptions in $D$.
It gives rise to a representation function $\beta_{\eta}: V \rightarrow \mathcal{P}(D)$ (corresponding to $L=(\mathcal{P}(D), \subseteq))$ defined by

$$
\beta_{\eta}(v)=\{\eta(v)\}
$$

The associated Galois connection is

$$
\left(\mathcal{P}(V), \alpha_{\eta}, \gamma_{\eta}, \mathcal{P}(D)\right)
$$

where

$$
\begin{aligned}
& \alpha_{\eta}\left(V^{\prime}\right)=\bigcup\left\{\beta_{\eta}(v) \mid v \in V^{\prime}\right\}=\left\{\eta(v) \mid v \in V^{\prime}\right\} \\
& \gamma_{\eta}\left(D^{\prime}\right)=\left\{v \in V \mid \beta_{\eta}(v) \subseteq D^{\prime}\right\}=\left\{v \mid \eta(v) \in D^{\prime}\right\}
\end{aligned}
$$

## Example:

## Extraction function

$$
\text { sign : Z } \rightarrow \text { Sign }
$$

specified by

$$
\operatorname{sign}(z)= \begin{cases}- & \text { if } z<0 \\ 0 & \text { if } z=0 \\ + & \text { if } z>0\end{cases}
$$

Galois connection

$$
\left(\mathcal{P}(\mathbf{Z}), \alpha_{\text {sign }}, \gamma_{\text {sign }}, \mathcal{P}(\mathbf{S i g n})\right)
$$

with


$$
\begin{aligned}
\alpha_{\text {sign }}(Z) & =\{\operatorname{sign}(z) \mid z \in Z\} \\
\gamma_{\text {sign }}(S) & =\{z \in \mathrm{Z} \mid \operatorname{sign}(z) \in S\}
\end{aligned}
$$

## Properties of Galois Connections

Lemma: If $(L, \alpha, \gamma, M)$ is a Galois connection then:

- $\alpha$ uniquely determines $\gamma$ by $\gamma(m)=\sqcup\{l \mid \alpha(l) \sqsubseteq m\}$
- $\gamma$ uniquely determines $\alpha$ by $\alpha(l)=\prod\{m \mid l \sqsubseteq \gamma(m)\}$
- $\alpha$ is completely additive and $\gamma$ is completely multiplicative

In particular $\alpha(\perp)=\perp$ and $\gamma(T)=T$.

## Lemma:

- If $\alpha: L \rightarrow M$ is completely additive then there exists (an upper adjoint) $\gamma: M \rightarrow L$ such that ( $L, \alpha, \gamma, M$ ) is a Galois connection.
- If $\gamma: M \rightarrow L$ is completely multiplicative then there exists (a lower adjoint) $\alpha: L \rightarrow M$ such that ( $L, \alpha, \gamma, M$ ) is a Galois connection.

Fact: If ( $L, \alpha, \gamma, M$ ) is a Galois connection then

- $\alpha \circ \gamma \circ \alpha=\alpha$ and $\gamma \circ \alpha \circ \gamma=\gamma$


## Example:

Define $\gamma_{\mathrm{IS}}: \mathcal{P}($ Sign $) \rightarrow$ Interval by:

$$
\begin{aligned}
\gamma_{\mathrm{IS}}(\{-, 0,+\}) & =[-\infty, \infty] & \gamma_{\mathrm{IS}}(\{-, 0\}) & =[-\infty, 0] \\
\gamma_{\mathrm{IS}}(\{-,+\}) & =[-\infty, \infty] & \gamma_{\mathrm{IS}}(\{0,+\}) & =[0, \infty] \\
\gamma_{\mathrm{IS}}(\{-\}) & =[-\infty,-1] & \gamma_{\mathrm{IS}}(\{0\}) & =[0,0] \\
\gamma_{\mathrm{IS}}(\{+\}) & =[1, \infty] & \gamma_{\mathrm{IS}}(\emptyset) & =\perp
\end{aligned}
$$

Does there exist an abstraction function

$$
\alpha_{\mathrm{IS}}: \text { Interval } \rightarrow \mathcal{P}(\text { Sign })
$$

such that (Interval, $\left.\alpha_{\mathrm{IS}}, \gamma_{\mathrm{IS}}, \mathcal{P}(\mathbf{S i g n})\right)$ is a Galois connection?

## Example (cont.):

Is $\gamma_{\text {IS }}$ completely multiplicative?

- if yes: then there exists a Galois connection
- if no: then there cannot exist a Galois connection

Lemma: If $L$ and $M$ are complete lattices and $M$ is finite then $\gamma: M \rightarrow L$ is completely multiplicative if and only if the following hold:

- $\gamma: M \rightarrow L$ is monotone,
- $\gamma(T)=T$, and
- $\gamma\left(m_{1} \sqcap m_{2}\right)=\gamma\left(m_{1}\right) \sqcap \gamma\left(m_{2}\right)$ whenever $m_{1} \not \mathbb{m} m_{2} \wedge m_{2} \mathbb{Z} m_{1}$

We calculate

$$
\begin{array}{ccccc}
\gamma_{\mathrm{IS}}(\{-, 0\} \cap\{-,+\}) & = & \gamma_{\mathrm{IS}}(\{-\}) & = & {[-\infty,-1]} \\
\gamma_{\mathrm{IS}}(\{-, 0\}) \sqcap \gamma_{\mathrm{IS}}(\{-,+\}) & = & {[-\infty, 0] \sqcap[-\infty, \infty]} & = & {[-\infty, 0]}
\end{array}
$$

showing that there is no Galois connection involving $\gamma_{\mathrm{I}}$.

## Galois Connections are the Right Concept

We use the mundane approach to correctness to demonstrate this for:

- Admissible correctness relations
- Representation functions


## The mundane approach: correctness relations

Assume

- $R: V \times L \rightarrow\{$ true, false $\}$ is an admissible correctness relation
- ( $L, \alpha, \gamma, M$ ) is a Galois connection
Then $S: V \times M \rightarrow\{$ true, false $\}$ defined by

$$
v S m \quad \underline{\text { iff }} \quad v R(\gamma(m))
$$

is an admissible correctness relation between $V$ and $M$

## The mundane approach: representation functions

Assume

- $R: V \times L \rightarrow\{$ true, false $\}$ is generated by $\beta: V \rightarrow L$
- ( $L, \alpha, \gamma, M$ ) is a Galois connection
Then $S: V \times M \rightarrow\{$ true, false $\}$ defined by

$$
v S m \quad \underline{\text { iff }} \quad v R(\gamma(m))
$$

is generated by $\alpha \circ \beta: V \rightarrow M$


## Galois Insertions



Monotone functions satisfying:
$\gamma \circ \alpha \sqsupseteq \lambda l . l$
$\alpha \circ \gamma=\lambda m . m$

## Example (1):

$$
\left(\mathcal{P}(\mathbf{Z}), \alpha_{\text {sign }}, \gamma_{\text {sign }}, \mathcal{P}(\text { Sign })\right)
$$

where sign: $\mathbf{Z} \rightarrow \mathbf{S i g n}$ is specified by:

$$
\operatorname{sign}(z)=\left\{\begin{array}{cl}
- & \text { if } z<0 \\
0 & \text { if } z=0 \\
+ & \text { if } z>0
\end{array}\right.
$$



Is it a Galois insertion?

## Example (2):

$$
\left(\mathcal{P}(\mathbf{Z}), \alpha_{\text {signparity }}, \gamma_{\text {signparity }}, \mathcal{P}(\text { Sign } \times \text { Parity })\right)
$$

where Sign $=\{-, 0,+\}$ and Parity $=\{$ odd, even $\}$
and signparity : $\mathbf{Z} \rightarrow \mathbf{S i g n} \times$ Parity:

$$
\text { signparity }(z)= \begin{cases}(\operatorname{sign}(z), \text { odd }) & \text { if } z \text { is odd } \\ (\operatorname{sign}(z), \text { even }) & \text { if } z \text { is even }\end{cases}
$$

Is it a Galois insertion?

## Properties of Galois Insertions

Lemma: For a Galois connection ( $L, \alpha, \gamma, M$ ) the following claims are equivalent:
(i) $(L, \alpha, \gamma, M)$ is a Galois insertion;
(ii) $\alpha$ is surjective: $\forall m \in M: \exists l \in L: \alpha(l)=m$;
(iii) $\gamma$ is injective: $\forall m_{1}, m_{2} \in M: \gamma\left(m_{1}\right)=\gamma\left(m_{2}\right) \Rightarrow m_{1}=m_{2}$; and
(iv) $\gamma$ is an order-similarity: $\forall m_{1}, m_{2} \in M: \gamma\left(m_{1}\right) \sqsubseteq \gamma\left(m_{2}\right) \Leftrightarrow m_{1} \sqsubseteq m_{2}$.

Corollary: A Galois connection specified by an extraction function $\eta$ : $V \rightarrow D$ is a Galois insertion if and only if $\eta$ is surjective.

Example (1) reconsidered:

$$
\begin{aligned}
& \left(\mathcal{P}(\mathbf{Z}), \alpha_{\text {sign }}, \gamma_{\text {sign }}, \mathcal{P}(\text { Sign })\right) \\
& \operatorname{sign}(z)= \begin{cases}- & \text { if } z<0 \\
0 & \text { if } z=0 \\
+ & \text { if } z>0\end{cases}
\end{aligned}
$$

is a Galois insertion because sign is surjective.
Example (2) reconsidered:

$$
\begin{gathered}
\left(\mathcal{P}(\mathbf{Z}), \alpha_{\text {signparity }}, \gamma_{\text {signparity }}, \mathcal{P}(\operatorname{Sign} \times \text { Parity })\right) \\
\operatorname{signparity}(z)= \begin{cases}(\operatorname{sign}(z), \text { odd }) & \text { if } z \text { is odd } \\
(\operatorname{sign}(z), \text { even }) & \text { if } z \text { is even }\end{cases}
\end{gathered}
$$

is not a Galois insertion because signparity is not surjective.

## Reduction Operators

Given a Galois connection ( $L, \alpha, \gamma, M$ ) it is always possible to obtain a Galois insertion by enforcing that the concretisation function $\gamma$ is injective.

Idea: remove the superfluous elements from $M$ using a reduction operator

$$
\varsigma: M \rightarrow M
$$

defined from the Galois connection.
Proposition: Let ( $L, \alpha, \gamma, M$ ) be a Galois connection and define the reduction operator $\varsigma: M \rightarrow M$ by

$$
\varsigma(m)=\sqcap\left\{m^{\prime} \mid \gamma(m)=\gamma\left(m^{\prime}\right)\right\}
$$

Then $\varsigma[M]=\left(\{\varsigma(m) \mid m \in M\}, \sqsubseteq_{M}\right)$ is a complete lattice and $(L, \alpha, \gamma, \varsigma[M])$ is a Galois insertion.

The reduction operator $\varsigma: M \rightarrow M$


## Reduction operators from extraction functions

Assume that the Galois connection $\left(\mathcal{P}(V), \alpha_{\eta}, \gamma_{\eta}, \mathcal{P}(D)\right.$ ) is given by an extraction function $\eta: V \rightarrow D$.

Then the reduction operator $s_{\eta}$ is given by

$$
\varsigma_{\eta}\left(D^{\prime}\right)=D^{\prime} \cap \eta[V]
$$

where $\eta[V]=\{d \in D \mid \exists v \in V: \eta(v)=d\}$.

Since $\varsigma_{\eta}[\mathcal{P}(D)]$ is isomorphic to $\mathcal{P}(\eta[V])$ the resulting Galois insertion is isomorphic to

$$
\left(\mathcal{P}(V), \alpha_{\eta}, \gamma_{\eta}, \mathcal{P}(\eta[V])\right)
$$

## Systematic Design of Galois Connections

The "functional composition" (or "sequential composition") of two Galois connections is also a Galois connection:

$$
L_{0} \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\alpha_{2}}} L_{1} \frac{\gamma_{2}}{\underset{\alpha_{3}}{\rightleftarrows}} L_{2} \stackrel{\gamma_{3}}{\frac{\gamma_{k}}{\alpha_{k}}} L_{k}
$$

A catalogue of techniques for combining Galois connections:

- independent attribute method - relational method
- direct product - direct tensor product
- reduced product - reduced tensor product
- total function space - monotone function space


## Running Example: Array Bound Analysis

Approximation of the difference in magnitude between two numbers (typically the index and the bound):

- a Galois connection for approximating pairs $\left(z_{1}, z_{2}\right)$ of integers by their difference $\left|z_{1}\right|-\left|z_{2}\right|$
- a Galois connection for approximating integers using a finite lattice $\{<-1,-1,0,+1,>+1\}$
- a Galois connection for their functional composition


## Example: Difference in Magnitude

$$
\left(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \alpha_{\text {diff }}, \gamma_{\text {diff }}, \mathcal{P}(\mathbf{Z})\right)
$$

where the extraction function diff : $\mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}$ calculates the difference in magnitude:

$$
\operatorname{diff}\left(z_{1}, z_{2}\right)=\left|z_{1}\right|-\left|z_{2}\right|
$$

The abstraction and concretisation functions are

$$
\begin{aligned}
\alpha_{\text {diff }}(Z Z) & =\left\{\left|z_{1}\right|-\left|z_{2}\right| \mid\left(z_{1}, z_{2}\right) \in Z Z\right\} \\
\gamma_{\text {diff }}(Z) & =\left\{\left(z_{1}, z_{2}\right)| | z_{1}\left|-\left|z_{2}\right| \in Z\right\}\right.
\end{aligned}
$$

for $Z Z \subseteq \mathbf{Z} \times \mathbf{Z}$ and $Z \subseteq \mathbf{Z}$.

## Example: Finite Approximation

$$
\left(\mathcal{P}(\mathbf{Z}), \alpha_{\text {range }}, \gamma_{\text {range }}, \mathcal{P}(\text { Range })\right)
$$

where Range $=\{<-1,-1,0,+1,>+1\}$ and the extraction function range : $\mathbf{Z} \rightarrow$ Range is

$$
\operatorname{range}(z)= \begin{cases}<-1 & \text { if } z<-1 \\ -1 & \text { if } z=-1 \\ 0 & \text { if } z=0 \\ +1 & \text { if } z=1 \\ >+1 & \text { if } z>1\end{cases}
$$

The abstraction and concretisation functions are

$$
\begin{aligned}
& \alpha_{\text {range }}(Z)=\{\operatorname{range}(z) \mid z \in Z\} \\
& \gamma_{\text {range }}(R)=\{z \mid \operatorname{range}(z) \in R\}
\end{aligned}
$$

for $Z \subseteq \mathbf{Z}$ and $R \subseteq$ Range.

## Example: Functional Composition

$$
\left(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \alpha_{R}, \gamma_{R}, \mathcal{P}(\text { Range })\right)
$$

where

$$
\begin{aligned}
& \alpha_{R}=\alpha_{\text {range }} \circ \alpha_{\text {diff }} \\
& \gamma_{R}=\gamma_{\text {diff }} \circ \gamma_{\text {range }}
\end{aligned}
$$

The explicit formulae for the abstraction and concretisation functions

$$
\begin{aligned}
\alpha_{\mathrm{R}}(Z Z) & =\left\{\operatorname{range}\left(\left|z_{1}\right|-\left|z_{2}\right|\right) \mid\left(z_{1}, z_{2}\right) \in Z Z\right\} \\
\gamma_{\mathrm{R}}(R) & =\left\{\left(z_{1}, z_{2}\right) \mid \operatorname{range}\left(\left|z_{1}\right|-\left|z_{2}\right|\right) \in R\right\}
\end{aligned}
$$

correspond to the extraction function range o diff.

## Approximation of Pairs

## Independent Attribute Method

Let ( $L_{1}, \alpha_{1}, \gamma_{1}, M_{1}$ ) and ( $L_{2}, \alpha_{2}, \gamma_{2}, M_{2}$ ) be Galois connections.

The independent attribute method gives a Galois connection

$$
\left(L_{1} \times L_{2}, \alpha, \gamma, M_{1} \times M_{2}\right)
$$

where

$$
\begin{aligned}
\alpha\left(l_{1}, l_{2}\right) & =\left(\alpha_{1}\left(l_{1}\right), \alpha_{2}\left(l_{2}\right)\right) \\
\gamma\left(m_{1}, m_{2}\right) & =\left(\gamma_{1}\left(m_{1}\right), \gamma_{2}\left(m_{2}\right)\right)
\end{aligned}
$$

## Example: Detection of Signs Analysis

Given

$$
\left(\mathcal{P}(\mathbf{Z}), \alpha_{\text {sign }}, \gamma_{\text {sign }}, \mathcal{P}(\text { Sign })\right)
$$

using the extraction function sign.

The independent attribute method gives

$$
\left(\mathcal{P}(\mathbf{Z}) \times \mathcal{P}(\mathbf{Z}), \alpha_{\mathrm{SS}}, \gamma_{\mathrm{SS}}, \mathcal{P}(\text { Sign }) \times \mathcal{P}(\text { Sign })\right)
$$

where

$$
\begin{aligned}
\alpha_{\mathrm{SS}}\left(Z_{1}, Z_{2}\right) & =\left(\left\{\operatorname{sign}(z) \mid z \in Z_{1}\right\},\left\{\operatorname{sign}(z) \mid z \in Z_{2}\right\}\right) \\
\gamma_{\mathrm{SS}}\left(S_{1}, S_{2}\right) & =\left(\left\{z \mid \operatorname{sign}(z) \in S_{1}\right\},\left\{z \mid \operatorname{sign}(z) \in S_{2}\right\}\right)
\end{aligned}
$$

## Motivating the Relational Method

The independent attribute method often leads to imprecision!

Semantics: The expression ( $x,-x$ ) may have a value in

$$
\{(z,-z) \mid z \in \mathbf{Z}\}
$$

Analysis: When we use $\mathcal{P}(\mathbf{Z}) \times \mathcal{P}(\mathbf{Z})$ to represent sets of pairs of integers we cannot do better than representing $\{(z,-z) \mid z \in \mathbf{Z}\}$ by

$$
(\mathbf{Z}, \mathbf{Z})
$$

Hence the best property describing it will be

$$
\alpha_{\mathrm{SS}}(\mathbf{Z}, \mathbf{Z})=(\{-, 0,+\},\{-, 0,+\})
$$

## Relational Method

Let $\left(\mathcal{P}\left(V_{1}\right), \alpha_{1}, \gamma_{1}, \mathcal{P}\left(D_{1}\right)\right)$ and ( $\left.\mathcal{P}\left(V_{2}\right), \alpha_{2}, \gamma_{2}, \mathcal{P}\left(D_{2}\right)\right)$ be Galois connections.

The relational method will give rise to the Galois connection

$$
\left(\mathcal{P}\left(V_{1} \times V_{2}\right), \alpha, \gamma, \mathcal{P}\left(D_{1} \times D_{2}\right)\right)
$$

where

$$
\begin{aligned}
\alpha(V V) & =\bigcup\left\{\alpha_{1}\left(\left\{v_{1}\right\}\right) \times \alpha_{2}\left(\left\{v_{2}\right\}\right) \mid\left(v_{1}, v_{2}\right) \in V V\right\} \\
\gamma(D D) & =\left\{\left(v_{1}, v_{2}\right) \mid \alpha_{1}\left(\left\{v_{1}\right\}\right) \times \alpha_{2}\left(\left\{v_{2}\right\}\right) \subseteq D D\right\}
\end{aligned}
$$

Generalisation to arbitrary complete lattices: use tensor products.

## Relational Method from Extraction Functions

Assume that the Galois connections $\left(\mathcal{P}\left(V_{i}\right), \alpha_{i}, \gamma_{i}, \mathcal{P}\left(D_{i}\right)\right)$ are given by extraction functions $\eta_{i}: V_{i} \rightarrow D_{i}$ as in

$$
\begin{aligned}
& \alpha_{i}\left(V_{i}^{\prime}\right)=\left\{\eta_{i}\left(v_{i}\right) \mid v_{i} \in V_{i}^{\prime}\right\} \\
& \gamma_{i}\left(D_{i}^{\prime}\right)=\left\{v_{i} \mid \eta_{i}\left(v_{i}\right) \in D_{i}^{\prime}\right\}
\end{aligned}
$$

Then the Galois connection ( $\mathcal{P}\left(V_{1} \times V_{2}\right), \alpha, \gamma, \mathcal{P}\left(D_{1} \times D_{2}\right)$ ) has

$$
\begin{aligned}
& \alpha(V V)=\left\{\left(\eta_{1}\left(v_{1}\right), \eta_{2}\left(v_{2}\right)\right) \mid\left(v_{1}, v_{2}\right) \in V V\right\} \\
& \gamma(D D)=\left\{\left(v_{1}, v_{2}\right) \mid\left(\eta_{1}\left(v_{1}\right), \eta_{2}\left(v_{2}\right)\right) \in D D\right\}
\end{aligned}
$$

which also can be obtained directly from the extraction function $\eta: V_{1} \times V_{2} \rightarrow D_{1} \times D_{2}$ defined by

$$
\eta\left(v_{1}, v_{2}\right)=\left(\eta_{1}\left(v_{1}\right), \eta_{2}\left(v_{2}\right)\right)
$$

## Example: Detection of Signs Analysis

Using the relational method we get a Galois connection

$$
\left(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \alpha_{\mathrm{SS}^{\prime}}, \gamma_{\mathrm{SS}}, \mathcal{P}(\mathbf{S i g n} \times \mathbf{S i g n})\right)
$$

where

$$
\begin{aligned}
\alpha_{\mathrm{SS}^{\prime}}(Z Z) & =\left\{\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \mid\left(z_{1}, z_{2}\right) \in Z Z\right\} \\
\gamma_{\mathrm{SS}^{\prime}}(S S) & =\left\{\left(z_{1}, z_{2}\right) \mid\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\}
\end{aligned}
$$

corresponding to an extraction function twosigns: $\mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{S i g n} \times$ Sign defined by

$$
\operatorname{twosigns}\left(z_{1}, z_{2}\right)=\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right)
$$

## Advantages of the Relational Method

Semantics: The expression ( $x,-x$ ) may have a value in

$$
\{(z,-z) \mid z \in \mathbf{Z}\}
$$

In the present setting $\{(z,-z) \mid z \in \mathbf{Z}\}$ is an element of $\mathcal{P}(\mathbf{Z} \times \mathbf{Z})$.

Analysis: The best "relational" property describing it is

$$
\alpha_{\mathrm{SS}^{\prime}}(\{(z,-z) \mid z \in \mathbf{Z}\})=\{(-,+),(0,0),(+,-)\}
$$

whereas the best "independent attribute" property was

$$
\alpha_{\mathrm{SS}}(\mathbf{Z}, \mathbf{Z})=(\{-, 0,+\},\{-, 0,+\})
$$

## Function Spaces

## Total Function Space

Let $(L, \alpha, \gamma, M)$ be a Galois connection and let $S$ be a set.

The Galois connection for the total function space

$$
\left(S \rightarrow L, \alpha^{\prime}, \gamma^{\prime}, S \rightarrow M\right)
$$

is defined by

$$
\alpha^{\prime}(f)=\alpha \circ f \quad \gamma^{\prime}(g)=\gamma \circ g
$$

Do we need to assume that $S$ is non-empty?

## Monotone Function Space

Let ( $L_{1}, \alpha_{1}, \gamma_{1}, M_{1}$ ) and ( $L_{2}, \alpha_{2}, \gamma_{2}, M_{2}$ ) be Galois connections.
The Galois connection for the monotone function space

$$
\left(L_{1} \rightarrow L_{2}, \alpha, \gamma, M_{1} \rightarrow M_{2}\right)
$$

is defined by

$$
\alpha(f)=\alpha_{2} \circ f \circ \gamma_{1} \quad \gamma(g)=\gamma_{2} \circ g \circ \alpha_{1}
$$



## Performing Analyses Simultaneously

Direct Product

Let ( $L, \alpha_{1}, \gamma_{1}, M_{1}$ ) and ( $L, \alpha_{2}, \gamma_{2}, M_{2}$ ) be Galois connections.

The direct product is the Galois connection

$$
\left(L, \alpha, \gamma, M_{1} \times M_{2}\right)
$$

defined by

$$
\begin{aligned}
\alpha(l) & =\left(\alpha_{1}(l), \alpha_{2}(l)\right) \\
\gamma\left(m_{1}, m_{2}\right) & =\gamma_{1}\left(m_{1}\right) \sqcap \gamma_{2}\left(m_{2}\right)
\end{aligned}
$$

## Example:

Combining the detection of signs analysis for pairs of integers with the analysis of difference in magnitude.

We get the Galois connection

$$
\left(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \alpha_{\mathrm{SSR}}, \gamma_{S S R}, \mathcal{P}(\text { Sign } \times \text { Sign }) \times \mathcal{P}(\text { Range })\right)
$$

where

$$
\begin{aligned}
\alpha_{\mathrm{SSR}}(Z Z)= & \left(\left\{\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \mid\left(z_{1}, z_{2}\right) \in Z Z\right\},\right. \\
& \left.\left\{\operatorname{range}\left(\left|z_{1}\right|-\left|z_{2}\right|\right) \mid\left(z_{1}, z_{2}\right) \in Z Z\right\}\right) \\
\gamma_{\mathrm{SSR}}(S S, R)= & \left\{\left(z_{1}, z_{2}\right) \mid\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\} \\
\cap & \left\{\left(z_{1}, z_{2}\right) \mid \operatorname{range}\left(\left|z_{1}\right|-\left|z_{2}\right|\right) \in R\right\}
\end{aligned}
$$

## Motivating the Direct Tensor Product

The expression ( $x, 3 * x$ ) may have a value in

$$
\{(z, 3 * z) \mid z \in \mathbf{Z}\}
$$

which is described by

$$
\alpha_{\mathrm{SSR}}(\{(z, 3 * z) \mid z \in \mathbf{Z}\})=(\{(-,-),(0,0),(+,+)\},\{0,<-1\})
$$

But

- any pair described by $(0,0)$ will have a difference in magnitude described by 0
- any pair described by (-,-) or (+,+) will have a difference in magnitude described by <-1
and the analysis cannot express this.


## Direct Tensor Product

Let $\left(\mathcal{P}(V), \alpha_{1}, \gamma_{1}, \mathcal{P}\left(D_{1}\right)\right)$ and $\left(\mathcal{P}(V), \alpha_{2}, \gamma_{2}, \mathcal{P}\left(D_{2}\right)\right)$ be Galois connections.

The direct tensor product is the Galois connection

$$
\left(\mathcal{P}(V), \alpha, \gamma, \mathcal{P}\left(D_{1} \times D_{2}\right)\right)
$$

defined by

$$
\begin{aligned}
\alpha\left(V^{\prime}\right) & =\bigcup\left\{\alpha_{1}(\{v\}) \times \alpha_{2}(\{v\}) \mid v \in V^{\prime}\right\} \\
\gamma(D D) & =\left\{v \mid \alpha_{1}(\{v\}) \times \alpha_{2}(\{v\}) \subseteq D D\right\}
\end{aligned}
$$

## Direct Tensor Product from Extraction Functions

Assume that the Galois connections ( $\mathcal{P}(V), \alpha_{i}, \gamma_{i}, \mathcal{P}\left(D_{i}\right)$ ) are given by extraction functions $\eta_{i}: V \rightarrow D_{i}$ as in

$$
\begin{aligned}
& \alpha_{i}\left(V^{\prime}\right)=\left\{\eta_{i}(v) \mid v \in V^{\prime}\right\} \\
& \gamma_{i}\left(D_{i}^{\prime}\right)=\left\{v \mid \eta_{i}(v) \in D_{i}^{\prime}\right\}
\end{aligned}
$$

The Galois connection $\left(\mathcal{P}(V), \alpha, \gamma, \mathcal{P}\left(D_{1} \times D_{2}\right)\right.$ ) has

$$
\begin{aligned}
\alpha\left(V^{\prime}\right) & =\left\{\left(\eta_{1}(v), \eta_{2}(v)\right) \mid v \in V^{\prime}\right\} \\
\gamma(D D) & =\left\{v \mid\left(\eta_{1}(v), \eta_{2}(v)\right) \in D D\right\}
\end{aligned}
$$

corresponding to the extraction function $\eta: V \rightarrow D_{1} \times D_{2}$ defined by

$$
\eta(v)=\left(\eta_{1}(v), \eta_{2}(v)\right)
$$

## Example:

Using the direct tensor product to combine the detection of signs analysis for pairs of integers with the analysis of difference in magnitude.

$$
\left(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \alpha_{\mathrm{SSR}^{\prime}}, \gamma_{\mathrm{SSR}^{\prime}}, \mathcal{P}(\operatorname{Sign} \times \operatorname{Sign} \times \mathbf{R a n g e})\right)
$$

is given by

$$
\begin{aligned}
\alpha_{\mathrm{SSR}^{\prime}}(Z Z) & =\left\{\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right), \text { range }\left(\left|z_{1}\right|-\left|z_{2}\right|\right)\right) \mid\left(z_{1}, z_{2}\right) \in Z Z\right\} \\
\gamma_{\mathrm{SSR}^{\prime}}(S S R) & =\left\{\left(z_{1}, z_{2}\right) \mid\left(\operatorname{sign}\left(z_{1}\right), \text { sign }\left(z_{2}\right), \text { range }\left(\left|z_{1}\right|-\left|z_{2}\right|\right)\right) \in S S R\right\}
\end{aligned}
$$

corresponding to twosignsrange : $\mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{S i g n} \times \mathbf{S i g n} \times$ Range given by

$$
\text { twosignsrange }\left(z_{1}, z_{2}\right)=\left(\operatorname{sign}\left(z_{1}\right), \text { sign }\left(z_{2}\right), \text { range }\left(\left|z_{1}\right|-\left|z_{2}\right|\right)\right)
$$

## Advantages of the Direct Tensor Product

The expression ( $\mathrm{x}, 3 * \mathrm{x}$ ) may have a value in $\{(z, 3 * z) \mid z \in \mathbf{Z}\}$ which in the direct tensor product can be described by

$$
\alpha_{\mathrm{SSR}^{\prime}}(\{(z, 3 * z) \mid z \in \mathbf{Z}\})=\{(-,-,<-1),(0,0,0),(+,+,<-1)\}
$$

compared to the direct product that gave

$$
\alpha_{\mathrm{SSR}}(\{(z, 3 * z) \mid z \in \mathbf{Z}\})=(\{(-,-),(0,0),(+,+)\},\{0,<-1\})
$$

Note that the Galois connection is not a Galois insertion because

$$
\gamma_{\mathrm{SSR}^{\prime}}(\emptyset)=\emptyset=\gamma_{\mathrm{SSR}^{\prime}}(\{(0,0,<-1)\})
$$

so $\gamma_{S S R^{\prime}}$ is not injective and hence we do not have a Galois insertion.

## From Direct to Reduced

## Reduced Product

Let ( $L, \alpha_{1}, \gamma_{1}, M_{1}$ ) and ( $L, \alpha_{2}, \gamma_{2}, M_{2}$ ) be Galois connections.

The reduced product is the Galois insertion

$$
\left(L, \alpha, \gamma, \varsigma\left[M_{1} \times M_{2}\right]\right)
$$

defined by

$$
\begin{aligned}
\alpha(l) & =\left(\alpha_{1}(l), \alpha_{2}(l)\right) \\
\gamma\left(m_{1}, m_{2}\right) & =\gamma_{1}\left(m_{1}\right) \sqcap \gamma_{2}\left(m_{2}\right) \\
\varsigma\left(m_{1}, m_{2}\right) & =\sqcap\left\{\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \mid \gamma_{1}\left(m_{1}\right) \sqcap \gamma_{2}\left(m_{2}\right)=\gamma_{1}\left(m_{1}^{\prime}\right) \sqcap \gamma_{2}\left(m_{2}^{\prime}\right)\right\}
\end{aligned}
$$

## Reduced Tensor Product

Let $\left(\mathcal{P}(V), \alpha_{1}, \gamma_{1}, \mathcal{P}\left(D_{1}\right)\right)$ and ( $\left.\mathcal{P}(V), \alpha_{2}, \gamma_{2}, \mathcal{P}\left(D_{2}\right)\right)$ be Galois connection.

The reduced tensor product is the Galois insertion

$$
\left(\mathcal{P}(V), \alpha, \gamma, \varsigma\left[\mathcal{P}\left(D_{1} \times D_{2}\right)\right]\right)
$$

defined by

$$
\begin{aligned}
\alpha\left(V^{\prime}\right) & =\bigcup\left\{\alpha_{1}(\{v\}) \times \alpha_{2}(\{v\}) \mid v \in V^{\prime}\right\} \\
\gamma(D D) & =\left\{v \mid \alpha_{1}(\{v\}) \times \alpha_{2}(\{v\}) \subseteq D D\right\} \\
\varsigma(D D) & =\bigcap\left\{D D^{\prime} \mid \gamma(D D)=\gamma\left(D D^{\prime}\right)\right\}
\end{aligned}
$$

## Example: Array Bounds Analysis

The superfluous elements of $\mathcal{P}(\operatorname{Sign} \times \operatorname{Sign} \times$ Range $)$ will be removed when we use a reduced tensor product:

The reduction operator $\varsigma_{S S R^{\prime}}$ amounts to

$$
\varsigma_{S S R^{\prime}}(S S R)=\bigcap\left\{S S R^{\prime} \mid \gamma_{S S R^{\prime}}(S S R)=\gamma_{S S R^{\prime}}\left(S S R^{\prime}\right)\right\}
$$

where $S S R, S S R^{\prime} \subseteq \operatorname{Sign} \times \operatorname{Sign} \times$ Range .

The singleton sets constructed from the following 16 elements

$$
\begin{array}{lll}
(-, 0,<-1), & (-, 0,-1), & (-, 0,0), \\
(0,-, 0), & (0,-,+1), & (0,-,>+1), \\
(0,0,<-1), & (0,0,-1), & (0,0,+1), \quad(0,0,>+1), \\
(0,+, 0), & (0,+,+1), & (0,+,>+1), \\
(+, 0,<-1), & (+, 0,-1), & (+, 0,0)
\end{array}
$$

will be mapped to the empty set (as they are useless).

## Example (cont.): Array Bounds Analysis

The remaining 29 elements of $\operatorname{Sign} \times \operatorname{Sign} \times$ Range are

$$
\begin{array}{lllll}
(-,-,<-1), & (-,-,-1), & (-,-, 0), & (-,-,+1), & (-,-,>+1), \\
(-, 0,+1), & (-, 0,>+1), & & & \\
(-,+,<-1), & (-,+,-1), & (-,+, 0), & (-,+,+1), & (-,+,>+1), \\
(0,-,<-1), & (0,-,-1), & (0,0,0), & (0,+,<-1), & (0,+,-1), \\
(+,-,<-1), & (+,-,-1), & (+,-, 0), & (+,-,+1), & (+,-,>+1), \\
(+, 0,+1), & (+, 0,>+1), & & & \\
(+,+,<-1), & (+,+,-1), & (+,+, 0), & (+,+,+1), & (+,+,>+1)
\end{array}
$$

and they describe disjoint subsets of $\mathbf{Z} \times \mathbf{Z}$.

Any collection of properties can be descibed in 4 bytes.

## Summary

The Array Bound Analysis has been designed from three simple Galois connections specified by extraction functions:
(i) an analysis approximating integers by their sign,
(ii) an analysis approximating pairs of integers by their difference in magnitude, and
(iii) an analysis approximating integers by their closeness to 0,1 and -1 .

These analyses have been combined using:
(iv) the relational product of analysis (i) with itself,
(v) the functional composition of analyses (ii) and (iii), and
(vi) the reduced tensor product of analyses (iv) and (v).

## Induced Operations

Given: Galois connections ( $L_{i}, \alpha_{i}, \gamma_{i}, M_{i}$ ) so that $M_{i}$ is more approximate than (i.e. is coarser than) $L_{i}$.

Aim: Replace an existing analysis over $L_{i}$ with an analysis making use of the coarser structure of $M_{i}$.

Methods:

- Inducing along the abstraction function: move the computations from $L_{i}$ to $M_{i}$.
- Application to Data Flow Analysis.
- Inducing along the concretisation function: move a widening from $M_{i}$ to $L_{i}$.


## Inducing along the Abstraction Function

Given Galois connections ( $L_{i}, \alpha_{i}, \gamma_{i}, M_{i}$ ) so that $M_{i}$ is more approximate than $L_{i}$.

Replace an existing analysis $f_{p}: L_{1} \rightarrow L_{2}$ with a new and more approximate analysis $g_{p}: M_{1} \rightarrow M_{2}$ : take $g_{p}=\alpha_{2} \circ f_{p} \circ \gamma_{1}$.


The analysis $\alpha_{2} \circ f_{p} \circ \gamma_{1}$ is induced from $f_{p}$ and the Galois connections.

## Example:

A very precise analysis for plus based on $\mathcal{P}(\mathbf{Z})$ and $\mathcal{P}(\mathbf{Z} \times \mathbf{Z})$ :

$$
f_{\text {plus }}(Z Z)=\left\{z_{1}+z_{2} \mid\left(z_{1}, z_{2}\right) \in Z Z\right\}
$$

Two Galois connections

$$
\begin{gathered}
\left(\mathcal{P}(\mathbf{Z}), \alpha_{\text {sign }}, \gamma_{\text {sign }}, \mathcal{P}(\text { Sign })\right) \\
\left(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \alpha_{\mathrm{SS}^{\prime}}, \gamma_{\mathrm{SS}}, \mathcal{P}(\operatorname{Sign} \times \operatorname{Sign})\right)
\end{gathered}
$$

An approximate analysis for plus based on $\mathcal{P}(\operatorname{Sign})$ and $\mathcal{P}(\operatorname{Sign} \times \operatorname{Sign})$ :

$$
g_{\text {plus }}=\alpha_{\text {sign }} \circ f_{\text {plus }} \circ \gamma_{\mathrm{SS}^{\prime}}
$$

## Example (cont.):

We calculate

$$
\begin{aligned}
g_{\text {plus }}(S S) & =\alpha_{\text {sign }}\left(f_{\text {plus }}\left(\gamma_{\text {SS }}(S S)\right)\right) \\
& =\alpha_{\text {sign }}\left(f_{\text {plus }}\left(\left\{\left(z_{1}, z_{2}\right) \in \mathbf{Z} \times \mathbf{Z} \mid\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\}\right)\right) \\
& =\alpha_{\text {sign }}\left(\left\{z_{1}+z_{2} \mid z_{1}, z_{2} \in \mathbf{Z},\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\}\right) \\
& =\left\{\operatorname{sign}\left(z_{1}+z_{2}\right) \mid z_{1}, z_{2} \in \mathbf{Z},\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\} \\
& =\cup\left\{s_{1} \oplus s_{2} \mid\left(s_{1}, s_{2}\right) \in S S\right\}
\end{aligned}
$$

where $\oplus: \operatorname{Sign} \times \operatorname{Sign} \rightarrow \mathcal{P}(\operatorname{Sign})$ is the "addition" operator on signs (so e.g. $+\oplus+=\{+\}$ and $+\oplus-=\{-, 0,+\}$ ).

## The Mundane Correctness of $f_{p}$ carries over to $g_{p}$

The correctness relation $R_{i}$ for $V_{i}$ and $L_{i}$ :

$$
R_{i}: V_{i} \times L_{i} \rightarrow\{\text { true, false }\} \text { is generated by } \beta_{i}: V_{i} \rightarrow L_{i}
$$

Correctness of $f_{p}$ means

$$
(p \vdash \cdot \sim \cdot)\left(R_{1} \rightarrow R_{2}\right) f_{p}
$$

(with $R_{1} \rightarrow R_{2}$ being generated by $\beta_{1} \rightarrow \beta_{2}$ ).
The correctness relation $S_{i}$ for $V_{i}$ and $M_{i}$ :

$$
S_{i}: V_{i} \times M_{i} \rightarrow\{\text { true, false }\} \text { is generated by } \alpha_{i} \circ \beta_{i}: V_{i} \rightarrow M_{i}
$$

One can prove that

$$
\begin{gathered}
(p \vdash \cdot \leadsto \cdot)\left(R_{1} \rightarrow R_{2}\right) f_{p} \wedge \alpha_{2} \circ f_{p} \circ \gamma_{1} \sqsubseteq g_{p} \\
\Rightarrow(p \vdash \cdot \sim \cdot)\left(S_{1} \rightarrow S_{2}\right) g_{p}
\end{gathered}
$$

with $S_{1} \rightarrow S_{2}$ being generated by $\left(\alpha_{1} \circ \beta_{1}\right) \rightarrow\left(\alpha_{2} \circ \beta_{2}\right)$.

## Fixed Points in the Induced Analysis

Let $f_{p}=\operatorname{Ifp}(F)$ for a monotone function $F:\left(L_{1} \rightarrow L_{2}\right) \rightarrow\left(L_{1} \rightarrow L_{2}\right)$.

The Galois connections ( $L_{i}, \alpha_{i}, \gamma_{i}, M_{i}$ ) give rise to a Galois connection $\left(L_{1} \rightarrow L_{2}, \alpha, \gamma, M_{1} \rightarrow M_{2}\right.$ )

Take $g_{p}=\operatorname{Ifp}(G)$ where $G:\left(M_{1} \rightarrow M_{2}\right) \rightarrow\left(M_{1} \rightarrow M_{2}\right)$ is an "upper approximation" to $F$ : we demand that $\alpha \circ F \circ \gamma \sqsubseteq G$.

Then for all $m \in M_{1} \rightarrow M_{2}$ :

$$
\begin{array}{r}
\qquad G(m) \sqsubseteq m \Rightarrow F(\gamma(m)) \sqsubseteq \gamma(m) \\
\text { and } \operatorname{Ifp}(F) \sqsubseteq \gamma(I f p(G)) \text { and } \alpha(I f p(F)) \sqsubseteq I f p(G)
\end{array}
$$

## Application to Data Flow Analysis

A generalised Monotone Framework consists of:

- the property space: a complete lattice $L=(L, \sqsubseteq)$;
- the set $\mathcal{F}$ of monotone functions from $L$ to $L$.

An instance A of a generalised Monotone Framework consists of:

- a finite flow, $F \subseteq$ Lab $\times$ Lab;
- a finite set of extremal labels, $E \subseteq$ Lab;
- an extremal value, $\iota \in L$; and
- a mapping $f$. from the labels Lab of $F$ and $E$ to monotone transfer functions from $L$ to $L$.


## Application to Data Flow Analysis

Let $(L, \alpha, \gamma, M)$ be a Galois connection.

Consider an instance B of the generalised Monotone Framework $M$ that satisfies

- the mapping $g$. from the labels Lab of $F$ and $E$ to monotone transfer functions of $M \rightarrow M$ satisfies $g_{\ell} \sqsupseteq \alpha \circ f_{\ell} \circ$ for all $\ell$; and
- the extremal value $\jmath$ satisfies

```
(\jmath)=\imath;
```

and otherwise $B$ is as $A$.

One can show that a solution to the $B$-constraints gives rise to a solution to the A-constraints:

$$
\left(B_{\circ}, B_{\bullet}\right) \models \mathrm{B} \sqsupseteq \quad \text { implies }\left(\gamma \circ B_{\circ}, \gamma \circ B_{\bullet}\right) \models \mathrm{A} \sqsupseteq
$$

## The Mundane Approach to Semantic Correctness

Here $F=\operatorname{flow}\left(S_{\star}\right)$ and $E=\left\{\operatorname{init}\left(S_{\star}\right)\right\}$.

Correctness of every solution to $A \sqsupseteq$ amounts to:
Assume $\left(A_{\circ}, A_{\bullet}\right) \models \mathrm{A}$ ㄱ and $\left\langle S_{\star}, \sigma_{1}\right\rangle \rightarrow^{*} \sigma_{2}$.
Then $\beta\left(\sigma_{1}\right) \sqsubseteq \iota$ implies $\beta\left(\sigma_{2}\right) \sqsubseteq \bigsqcup\left\{A_{\bullet}(\ell) \mid \ell \in\right.$ final $\left.\left(S_{\star}\right)\right\}$.
where $\beta$ : State $\rightarrow L$.

One can then prove the correctness result for B:
Assume $\left(B_{\circ}, B_{\bullet}\right) \models \mathrm{B} \sqsupseteq$ and $\left\langle S_{\star}, \sigma_{1}\right\rangle \rightarrow^{*} \sigma_{2}$.
Then $(\alpha \circ \beta)\left(\sigma_{1}\right) \sqsubseteq \jmath$ implies $(\alpha \circ \beta)\left(\sigma_{2}\right) \sqsubseteq \bigsqcup\left\{B \bullet(\ell) \mid \ell \in\right.$ final $\left.\left(S_{\star}\right)\right\}$.

## Sets of States Analysis

Generalised Monotone Framework over ( $\mathcal{P}($ State $), \subseteq$ ).
Instance SS for $S_{\star}$ :

- the flow $F$ is $\operatorname{flow}\left(S_{\star}\right)$;
- the set $E$ of extremal labels is $\left\{\operatorname{init}\left(S_{\star}\right)\right\}$;
- the extremal value $\iota$ is State; and
- the transfer functions are given by $f$. ${ }^{S S}$ :

$$
\begin{array}{ll}
{[x:=a]^{\ell}} & f_{\ell}^{\mathrm{SS}}(\Sigma)
\end{array}=\{\sigma[x \mapsto \mathcal{A} \llbracket a \rrbracket \sigma] \mid \sigma \in \Sigma\}
$$

where $\Sigma \subseteq$ State.

Correctness: Assume $\left(S S_{\circ}, S_{\bullet}\right) \models S S \supseteq$ and $\left\langle S_{\star}, \sigma_{1}\right\rangle \rightarrow^{*} \sigma_{2}$. Then $\sigma_{1} \in$ State implies $\sigma_{2} \in \bigcup\left\{S_{\bullet}(\ell) \mid \ell \in\right.$ final $\left.\left(S_{\star}\right)\right\}$.

## Constant Propagation Analysis

Generalised Monotone Framework over $\widehat{\operatorname{State}}_{C P}=\left(\left(\operatorname{Var} \rightarrow \mathbf{Z}^{\top}\right)_{\perp}, \sqsubseteq\right)$. Instance $C P$ for $S_{\star}$ :

- the flow $F$ is $\operatorname{flow}\left(S_{\star}\right)$;
- the set $E$ of extremal labels is $\left\{\operatorname{init}\left(S_{\star}\right)\right\}$;
- the extremal value $\iota$ is $\lambda x$. T; and
- the transfer functions are given by the mapping $f_{\text {. }}$ :

$$
\begin{array}{lll}
{[x:=a]^{\ell}:} & f_{\ell}^{\mathrm{CP}}(\hat{\sigma})= \begin{cases}\perp & \text { if } \widehat{\sigma}=\perp \\
\hat{\sigma}\left[x \mapsto \mathcal{A}_{\mathrm{CP}} \llbracket a \rrbracket \widehat{\sigma}\right] & \text { otherwise }\end{cases} \\
{[\text { skip }]^{\ell}:} & f_{\ell}^{\mathrm{CP}}(\hat{\sigma})=\widehat{\sigma} & \\
{[b]^{\ell}:} & f_{\ell}^{\mathrm{CP}}(\hat{\sigma})=\widehat{\sigma} &
\end{array}
$$

## Galois Connection

The representation function $\beta_{\mathrm{CP}}:$ State $\rightarrow \widehat{\text { State }}_{\mathrm{CP}}$ is defined by

$$
\beta_{\mathrm{CP}}(\sigma)=\sigma
$$

This gives rise to a Galois connection

$$
\left(\mathcal{P}(\text { State }), \alpha_{\mathrm{CP}}, \gamma_{\mathrm{CP}}, \widehat{\text { State }}_{\mathrm{CP}}\right)
$$

where $\alpha_{\mathrm{CP}}(\Sigma)=\sqcup\left\{\beta_{\mathrm{CP}}(\sigma) \mid \sigma \in \Sigma\right\}$ and $\gamma_{\mathrm{CP}}(\widehat{\sigma})=\left\{\sigma \mid \beta_{\mathrm{CP}}(\sigma) \sqsubseteq \widehat{\sigma}\right\}$.
One can show that for all labels $\ell$


It follows that $C P$ is an upper approximation to the analysis induced from SS and the Galois connection; therefore it is correct.

## Inducing along the Concretisation Function

Given an upper bound operator

$$
\nabla_{M}: M \times M \rightarrow M
$$

and a Galois connection $(L, \alpha, \gamma, M)$.

Define an upper bound operator

$$
\nabla_{L}: L \times L \rightarrow L
$$

by

$$
l_{1} \nabla_{L} l_{2}=\gamma\left(\alpha\left(l_{1}\right) \nabla_{M} \alpha\left(l_{2}\right)\right)
$$

It defines a widening operator if one of the following conditions holds:
(i) $M$ satisfies the Ascending Chain Condition, or
(ii) $(L, \alpha, \gamma, M)$ is a Galois insertion and $\nabla_{M}: M \times M \rightarrow M$ is a widening.

## Precision of the Induced Widening Operator

Lemma: Let $(L, \alpha, \gamma, M)$ be a Galois insertion such that $\gamma\left(\perp_{M}\right)=\perp_{L}$ and let $\nabla_{M}: M \times M \rightarrow M$ be a widening operator.

Then the widening operator $\nabla_{L}: L \times L \rightarrow L$ defined by

$$
l_{1} \nabla_{L} l_{2}=\gamma\left(\alpha\left(l_{1}\right) \nabla_{M} \alpha\left(l_{2}\right)\right)
$$

satisfies

$$
I f p_{\nabla_{L}}(f)=\gamma\left(I f p_{\nabla_{M}}(\alpha \circ f \circ \gamma)\right)
$$

for all monotone functions $f: L \rightarrow L$.

## Precision of the Induced Widening Operator

Corollary: Let $M$ be of finite height, let $(L, \alpha, \gamma, M)$ be a Galois insertion (such that $\gamma\left(\perp_{M}\right)=\perp_{L}$ ), and let $\nabla_{M}$ equal the least upper bound operator $\sqcup_{M}$.

Then the above lemma shows that $I f p_{\nabla_{L}}(f)=\gamma(I f p(\alpha \circ f \circ \gamma))$.
This means that $I f p_{\nabla_{L}}(f)$ equals the result we would have obtained if we decided to work with $\alpha \circ f \circ \gamma: M \rightarrow M$ instead of the given $f: L \rightarrow L$; furthermore the number of iterations needed turn out to be the same. However, for all other operations the increased precision of $L$ is available.

