Principles of Program Analysis:

Control Flow Analysis

Transparencies based on Chapter 3 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag 2005. © Flemming Nielson \& Hanne Riis Nielson \& Chris Hankin.

The Dynamic Dispatch Problem

These problems arise for:

- imperative languages with procedures as parameters
- object oriented languages
- functional languages

Example:

$$
\begin{aligned}
& \text { let } f=f n \mathrm{x}=>\mathrm{x} 1 \text {; } \\
& \mathrm{g}=\mathrm{fn} \mathrm{y}=\mathrm{y}+2 \text {; } \\
& h=f n z=>z+3 \\
& \text { in (f g) }+(f \mathrm{~h})
\end{aligned}
$$

The aim of Control Flow Analysis:

For each function application, which functions may be applied?

> Control Flow Analysis computes the interprocedural flow relation used when formulating interprocedural Data Flow Analysis.

Syntax of the Fun Language

Syntactic categories:

$$
\begin{array}{rlll}
e & \in \text { Exp } & \text { expressions (or labelled terms) } \\
t & \in \text { Term } & \text { terms (or unlabelled expressions) } \\
f, x & \in \text { Var } & \text { variables } \\
c & \in \text { Const } & \text { constants } \\
o p & \in \text { Op } & \text { binary operators } \\
\ell & \in \text { Lab } & \text { labels }
\end{array}
$$

Syntax:

$$
\begin{aligned}
e & ::=t^{\ell} \\
t: & :=c|x| \text { fn } x=>e_{0} \mid \text { fun } f x=>e_{0} \mid e_{1} e_{2} \\
& \mid \text { if } e_{0} \text { then } e_{1} \text { else } e_{2} \mid \text { let } x=e_{1} \text { in } e_{2} \mid e_{1} \text { op } e_{2}
\end{aligned}
$$

(Labels correspond to program points or nodes in the parse tree.)

Examples:

- $\left(\left(f n x=>x^{1}\right)^{2}\left(f n y=>y^{3}\right)^{4}\right)^{5}$
- (let $f=\left(f n x=>\left(x^{1} 1^{2}\right)^{3}\right)^{4}$; in (let $g=\left(f n y=y^{5}\right)^{6}$;

$$
\begin{aligned}
& \text { in }\left(\text { let } h=\left(f n z \Rightarrow z^{7}\right)^{8}\right. \\
& \left.\left.\left.\quad \text { in }\left(\left(f^{9} g^{10}\right)^{11}+\left(f^{12} h^{13}\right)^{14}\right)^{15}\right)^{16}\right)^{17}\right)^{18}
\end{aligned}
$$

- $\quad\left(\right.$ let $g=\left(f u n f x=>\left(f{ }^{1}\left(f n y=y^{2}\right)^{3}\right)^{4}\right)^{5}$

$$
\text { in } \left.\left(g^{6}\left(f n z \Rightarrow z^{7}\right)^{8}\right)^{9}\right)^{10}
$$

Abstract 0-CFA Analysis

- Abstract domains
- Specification of the analysis
- Well-definedness of the analysis

Towards defining the Abstract Domains

The result of a 0-CFA analysis is a pair ($\widehat{\mathrm{C}}, \hat{\rho}$):

- \hat{C} is the abstract cache associating abstract values with each labelled program point
- $\hat{\rho}$ is the abstract environment associating abstract values with each variable

Example:

$$
\left(\left(f n x=>x^{1}\right)^{2}\left(f n y=y^{3}\right)^{4}\right)^{5}
$$

Three guesses of a 0-CFA analysis result:

	$\left(\widehat{C}_{e}, \widehat{\rho}_{e}\right)$	$\left(\widehat{C}_{\mathrm{e}}^{\prime},,_{\rho}^{\prime}\right.$)	$\left(\widehat{C}_{e}^{\prime \prime}, \widehat{\rho}_{e}^{\prime \prime}\right)$
1	$\left\{\mathrm{fn} \mathrm{y}=\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	\{fn $\mathrm{x}=>\mathrm{x}^{1}$, fn $\left.\mathrm{y}=>\mathrm{y}^{3}\right\}$
2	$\left\{\mathrm{fn} \mathrm{x}=\mathrm{x}^{1}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right.$, fn $\left.\mathrm{y}=>\mathrm{y}^{3}\right\}$
3	\emptyset	\emptyset	$\left\{\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1}\right.$, fn $\left.\mathrm{y}=>\mathrm{y}^{3}\right\}$
4	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right.$, fn $\left.\mathrm{y}=>\mathrm{y}^{3}\right\}$
5	$\left\{\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right.$, fn $\left.\mathrm{y}=>\mathrm{y}^{3}\right\}$
x	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	\emptyset	$\left\{\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1}\right.$, fn $\left.\mathrm{y}=>\mathrm{y}^{3}\right\}$
y	\emptyset	\emptyset	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}, \mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$

Example:

$$
\begin{aligned}
& \left(\text { let } g=\left(\text { fun } f x \Rightarrow\left(f^{1}\left(\text { fn } y=>y^{2}\right)^{3}\right)^{4}\right)^{5}\right. \\
& \text { in } \left.\left(g^{6}\left(\text { fn } z=>z^{7}\right)^{8}\right)^{9}\right)^{10}
\end{aligned}
$$

Abbreviations:

$$
\begin{aligned}
\mathrm{f} & =\text { fun } \mathrm{fx}=>\left(\mathrm{f}^{1} \quad\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right)^{3}\right)^{4} \\
\mathrm{id}_{y} & =\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2} \\
\mathrm{id}_{z} & =\mathrm{fn} \mathrm{z} \Rightarrow \mathrm{z}^{7}
\end{aligned}
$$

One guess of a 0-CFA analysis result:

$$
\begin{array}{lll}
\widehat{C}_{l p}(1)=\{\mathrm{f}\} & \widehat{C}_{l p}(6)=\{\mathrm{f}\} & \widehat{\rho}_{l p}(\mathrm{f})=\{\mathrm{f}\} \\
\widehat{\mathrm{C}}_{\mathrm{lp}}(2)=\emptyset & \widehat{C}_{l p}(7)=\emptyset & \widehat{\rho}_{l p}(\mathrm{~g})=\{\mathrm{f}\} \\
\widehat{C}_{l p}(3)=\left\{\mathrm{id}_{y}\right\} & \widehat{C}_{l p}(8)=\left\{\mathrm{id}_{z}\right\} & \widehat{\rho}_{l p}(\mathrm{x})=\left\{\mathrm{id}_{y}, \mathrm{id}_{z}\right\} \\
\widehat{\mathrm{C}}_{\mathrm{lp}}(4)=\emptyset & \widehat{\mathrm{C}}_{\mathrm{lp}}(9)=\emptyset & \widehat{\rho}_{l p}(\mathrm{y})=\emptyset \\
\widehat{\mathrm{C}}_{\mathrm{lp}}(5)=\{\mathrm{f}\} & \widehat{\mathrm{C}}_{\mathrm{Ip}}(10)=\emptyset & \widehat{\rho}_{\mid p}(\mathrm{z})=\emptyset
\end{array}
$$

Abstract Domains

Formally:

$$
\begin{array}{lll}
\widehat{v} \in \widehat{\text { Val }} & =\mathcal{P}(\text { Term }) & \text { abstract values } \\
\hat{\rho} \in \widehat{\text { Env }} & =\widehat{\text { Var }} \rightarrow \widehat{\text { Val }} & \text { abstract environments } \\
\widehat{C} \in \widehat{\text { Cache }} & =\mathbf{L a b} \rightarrow \widehat{\text { Val }} & \text { abstract caches }
\end{array}
$$

An abstract value \hat{v} is a set of terms of the forms

- $\mathrm{fn} x=e_{0}$
- fun $f x=>e_{0}$

Control Flow Analysis versus Use-Definition chains

The aim: to trace how definition points reach use points

- Control Flow Analysis
- definition points: where function abstractions are created
- use points: where functions are applied
- Use-Definition chains
- definition points: where variables are assigned a value
- use points: where values of variables are accessed

Specification of the 0-CFA

When is a proposed guess ($\widehat{C}, \widehat{\rho}$) of an analysis results an acceptable 0-CFA analysis for the program?

Different approaches:

- abstract specification
- syntax-directed and constraint-based specifications
- algorithms for computing the best result

Specification of the Abstract 0-CFA

$(\hat{C}, \widehat{\rho}) \models e$ means that $(\hat{C}, \widehat{\rho})$ is an acceptable Control Flow Analysis of the expression e

The relation \vDash has functionality:

$$
\vDash:(\widehat{\text { Cache }} \times \widehat{\operatorname{Env}} \times \operatorname{Exp}) \rightarrow\{\text { true }, \text { false }\}
$$

Clauses for Abstract 0-CFA (1)

$$
(\widehat{\mathrm{C}}, \widehat{\rho}) \models c^{\ell} \text { always }
$$

$$
(\widehat{C}, \widehat{\rho}) \models x^{\ell} \quad \text { iff } \quad \hat{\rho}(x) \subseteq \widehat{C}(\ell)
$$

$$
\begin{aligned}
& (\widehat{C}, \widehat{\rho})=\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad \begin{array}{l}
(\widehat{C}, \hat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\hat{C}, \hat{\rho}) \models t_{2}^{\ell_{2}} \wedge \\
\\
\widehat{C}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \quad \wedge \widehat{C}\left(\ell_{2}\right) \subseteq \widehat{C}(\ell)
\end{array}
\end{aligned}
$$

\hat{C}

$$
\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell}
$$

, '

Clauses for Abstract 0-CFA (2)

$$
\begin{aligned}
& (\widehat{C}, \hat{\rho}) \models\left(\text { if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\hat{C}, \hat{\rho}) \models t_{0}^{t_{0}} \wedge \\
& (\hat{C}, \hat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\hat{C}, \hat{\rho}) \models t_{2}^{\ell_{2}} \wedge \\
& \hat{c}\left(\ell_{1}\right) \subseteq \hat{c}(\ell) \wedge \hat{c}\left(\ell_{2}\right) \subseteq \hat{c}(\ell) \\
& (\hat{C}, \hat{\rho}) \models\left(t_{1}^{\ell_{1}} \text { op } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\hat{c}, \hat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\hat{c}, \hat{\rho}) \models t_{2}^{\ell_{2}}
\end{aligned}
$$

Clauses for Abstract 0-CFA (3)

$$
(\widehat{C}, \widehat{\rho}) \models\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right)^{\ell} \text { iff }\left\{\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right\} \subseteq \widehat{C}(\ell)
$$

$$
\begin{aligned}
& (\hat{\mathrm{C}}, \hat{\rho}) \models\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \\
& \quad \text { iff } \quad(\hat{\mathrm{C}}, \hat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \hat{\rho}) \models t_{2}^{\ell_{2}} \wedge
\end{aligned}
$$

$$
\begin{array}{ll}
(\hat{\mathrm{C}}, \hat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{2}^{\ell_{2}} & \wedge \\
\left(\forall\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{\mathrm{C}}\left(\ell_{1}\right):\right. & (\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{0}^{\ell_{0}} \wedge \\
& \left.\hat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \hat{\rho}(x) \wedge \hat{\mathrm{C}}\left(\ell_{0}\right) \subseteq \hat{\mathrm{C}}(\ell)\right)
\end{array}
$$

Clauses for Abstract 0-CFA (4)
$(\hat{C}, \hat{\rho}) \models\left(\text { fun } f x \Rightarrow e_{0}\right)^{\ell}$ iff $\left\{\right.$ fun $\left.f x \Rightarrow e_{0}\right\} \subseteq \widehat{C}(\ell)$
$(\hat{\mathrm{C}}, \hat{\rho}) \models\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell}$
iff

$$
\begin{aligned}
&(\widehat{C}, \widehat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{C}, \widehat{\rho}) \models t_{2}^{\ell_{2}} \wedge \\
&\left(\forall\left(\text { fn } x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{C}\left(\ell_{1}\right): \quad\right.(\widehat{C}, \widehat{\rho}) \models t_{0}^{\ell_{0}} \wedge \\
&\left(\forall\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{C}\left(\ell_{1}\right):\right.(\widehat{C}, \hat{\rho}) \models t_{0}^{\ell_{0}} \wedge \\
&\left.\widehat{C}\left(\ell_{2}\right) \subseteq \hat{\rho}(x) \wedge \widehat{C}\left(\ell_{0}\right) \subseteq \widehat{C}(\ell) \wedge \widehat{C}(\ell)\right) \wedge \\
&\left\{\text { fun } f x \Rightarrow t_{0}^{\left.\left.\ell_{0}\right\} \subseteq \widehat{\rho}(f)\right)}\right.
\end{aligned}
$$

Example:

Two guesses for $\left(\left(f n x=>x^{1}\right)^{2}\left(f n y=>y^{3}\right)^{4}\right)^{5}$

	$\left(\widehat{C}_{e}, \widehat{\rho}_{e}\right)$	$\left(\widehat{C}_{\mathrm{e}}^{\prime}, \hat{\rho}_{\mathrm{e}}^{\prime}\right)$
1	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
2	$\left\{\mathrm{fn} \mathrm{x}=\mathrm{x}^{1}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right\}$
3	1	\emptyset
4	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
5	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
x	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	\emptyset
y	0	\emptyset

Checking the guesses:

$$
\begin{aligned}
& \left(\widehat{\mathrm{C}}_{\mathrm{e}}, \hat{\rho}_{\mathrm{e}}\right) \vDash\left(\left(\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right)^{2}\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{3}\right)^{4}\right)^{5} \\
& \left(\widehat{\mathrm{C}}_{\mathrm{e}}^{\prime}, \hat{\rho}_{\mathrm{e}}^{\prime}\right) \not \equiv\left(\left(\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right)^{2}\left(\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right)^{4}\right)^{5}
\end{aligned}
$$

Well-definedness of the Abstract 0-CFA

Difficulty: The clause for function application is not of a form that allows us to define $(\widehat{C}, \widehat{\rho}) \models e$ by Structural Induction in the expression e

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \hat{\rho}) \models\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad\left(\begin{array}{l}
(\hat{\mathrm{C}}, \widehat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{2}^{\ell_{2}} \wedge \\
\quad\left(\forall\left(\mathrm{fn} x=>t_{0}^{\ell_{0}}\right) \in \widehat{\mathrm{C}}\left(\ell_{1}\right): \quad(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{0}^{\ell_{0}} \wedge\right. \\
\\
\\
\\
\left.\hat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{0}\right) \subseteq \widehat{\mathrm{C}}(\ell)\right)
\end{array}\right.
\end{aligned}
$$

Solution: The relation \models is defined by coinduction, that is, as the greatest fixed point of a functional.

The functional \mathcal{Q}

The clauses for \vDash define a function:

$$
\begin{aligned}
\mathcal{Q}: & (\text { (Cache } \times \widehat{\text { Env }} \times \text { Exp }) \rightarrow\{\text { true, false }\}) \\
& \rightarrow((\text { Cache } \times \widehat{\text { Env }} \times \operatorname{Exp}) \rightarrow\{\text { true }, \text { false }\})
\end{aligned}
$$

Example:

$$
\begin{aligned}
(\widehat{\mathrm{C}}, \widehat{\rho}) & \models\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{2}^{\ell_{2}} \wedge \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\mathrm{C}}(\ell)
\end{aligned}
$$

becomes

$$
\begin{aligned}
& \mathcal{Q}(Q)\left(\widehat{\mathrm{C}}, \hat{\rho},\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell}\right) \\
& \quad=Q\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{1}^{\ell_{1}}\right) \wedge Q\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{2}^{\ell_{2}}\right) \wedge \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\mathrm{C}}(\ell)
\end{aligned}
$$

Properties of \mathcal{Q}

\mathcal{Q} is a monotone function on the complete lattice

$$
((\text { Cache } \times \widehat{\operatorname{Env}} \times \operatorname{Exp}) \rightarrow\{\text { true, false }\}, \sqsubseteq)
$$

where the ordering \sqsubseteq is defined by:

$$
Q_{1} \sqsubseteq Q_{2} \text { iff } \forall(\widehat{\mathrm{C}}, \widehat{\rho}, e):\left(Q_{1}(\widehat{\mathrm{C}}, \widehat{\rho}, e)=\text { true }\right) \Rightarrow\left(Q_{2}(\widehat{\mathrm{C}}, \widehat{\rho}, e)=\text { true }\right)
$$

Hence \mathcal{Q} has fixed points and we shall define \vDash coinductively:
\vDash is the greatest fixed point of \mathcal{Q}

Tarski's Theorem:

A monotone function on a complete lattice has a complete lattice of fixed points and in particular a least and a greatest fixed point.

$$
\begin{aligned}
\mathcal{Q} & :((\text { Cache } \times \widehat{\operatorname{Env}} \times \mathbf{E x p}) \rightarrow\{\text { true }, \text { false }\}) \\
& \rightarrow((\text { Cache } \times \widehat{\text { Env }} \times \operatorname{Exp}) \rightarrow\{\text { true }, \text { false }\})
\end{aligned}
$$

Coinductive definition:

$$
\operatorname{gfp}(\mathcal{Q})=\bigsqcup\{P \mid \mathcal{Q}(P) \sqsupseteq P\}
$$

Inductive definition:

$$
\begin{aligned}
\operatorname{Ifp}(\mathcal{Q}) & =\prod\{P \mid \mathcal{Q}(P) \sqsubseteq P\} \\
& =\bigsqcup_{n} \mathcal{Q}^{n}(\perp)
\end{aligned}
$$

assuming that $\mathcal{Q}(P)(\widehat{\mathrm{C}}, \widehat{\rho}, e)$ only depends on finitely many values of P

Inductive Definition

$$
P=\operatorname{Ifp}(\mathcal{Q})=\bigsqcup_{n} \mathcal{Q}^{n}(\perp) \quad \text { assuming } \cdots
$$

P can be expressed as

$$
\begin{aligned}
& P\left(\widehat{\mathrm{C}}, \widehat{\rho}, x^{\ell}\right) \text { iff } \widehat{\rho}(x) \subseteq \widehat{\mathrm{C}}(\ell) \\
& P\left(\widehat{\mathrm{C}}, \widehat{\rho},\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell}\right) \text { iff } \\
& \quad P\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{1}^{\ell_{1}}\right) \wedge P\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{2}^{\ell_{2}}\right) \\
& \quad \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \hat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\mathrm{C}}(\ell)
\end{aligned}
$$

:
simply because $P=\mathcal{Q}(P)$

Example:

0 is a number
$n+1$ is a number iff n is a number (Peano's Axioms)
to check $P(\widehat{\mathrm{C}}, \widehat{\rho}, e)$
simply unfold using the clauses:
if it terminates
and yields true: then it holds and yields false: then it does not if it loops
because it repeats itself: then it does not hold but we cannot detect it ...

Example:
$2=0+1+1$ is a number because $0+1$ is because 0 is

Inductive Definition

to prove: $\forall(\widehat{\mathrm{C}}, \widehat{\rho}, e): P(\widehat{\mathrm{C}}, \widehat{\rho}, e) \Rightarrow R(\widehat{\mathrm{C}}, \widehat{\rho}, e)$
show: $\quad R\left(\widehat{C}, \widehat{\rho}, x^{\ell}\right)$ if $\hat{\rho}(x) \subseteq \widehat{C}(\ell) \quad$ axiom

$$
\begin{aligned}
& \frac{R\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{1}^{\ell_{1}}\right) \quad R\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{2}^{\ell_{2}}\right)}{R\left(\widehat{\mathrm{C}}, \widehat{\rho},\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right) \ell\right)} \quad \text { inference rule } \\
& \text { if } \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\mathrm{C}}(\ell) \\
& :
\end{aligned}
$$

Examples:

- mathematical induction: $R(0), \frac{R(n)}{R(n+1)}$
- structural induction
- induction on the shape of inference tree

Coinductive Definition

$$
P=g f p(\mathcal{Q})=\bigsqcup\{R \mid R \sqsubseteq \mathcal{Q}(R)\}
$$

P can be expressed as

$$
\begin{aligned}
& P\left(\widehat{\mathrm{C}}, \widehat{\rho}, x^{\ell}\right) \text { iff } \widehat{\rho}(x) \subseteq \widehat{\mathrm{C}}(\ell) \\
& P\left(\widehat{\mathrm{C}}, \widehat{\rho},\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell}\right) \text { iff } \\
& \quad P\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{1}^{\ell_{1}}\right) \wedge P\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{2}^{\ell_{2}}\right) \\
& \quad \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\mathrm{C}}(\ell)
\end{aligned}
$$

simply because $P=\mathcal{Q}(P)$
to check $P(\widehat{\mathrm{C}}, \widehat{\rho}, e)$
find some R such that $R(\widehat{\mathrm{C}}, \hat{\rho}, e)$ can be shown to hold that is prove:

$$
R\left(\widehat{\mathrm{C}}, \widehat{\rho}, x^{\ell}\right) \text { if } \widehat{\rho}(x) \subseteq \widehat{\mathrm{C}}(\ell)
$$

$$
\frac{R\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{1}^{\ell_{1}}\right) \quad R\left(\widehat{\mathrm{C}}, \widehat{\rho}, t_{2}^{\ell_{2}}\right)}{R\left(\widehat{\mathrm{C}}, \widehat{\rho},\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell}\right)}
$$

$$
\text { if } \widehat{C}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{C}\left(\ell_{2}\right) \subseteq \widehat{C}(\ell)
$$

:
and use $P=\bigsqcup\{R \mid R \sqsubseteq \mathcal{Q}(R)\}$

Coinductive Definition

to prove: $\forall(\widehat{C}, \widehat{\rho}, e): P(\widehat{C}, \widehat{\rho}, e) \Rightarrow R(\widehat{C}, \widehat{\rho}, e)$

- try to prove it using $P=\mathcal{Q}(P)$
i.e. by using the way P is expressed
- if it fails try to do induction (on the structure or size) of e
- if it fails ... you will need an extra insight

Example: loop

$$
\begin{aligned}
& \left(\text { let } g=\left(\text { fun } f x \Rightarrow\left(f^{1}\left(\text { fn } y=y^{2}\right)^{3}\right)^{4}\right)^{5}\right. \\
& \text { in } \left.\left(g^{6}\left(\text { fn } z=>z^{7}\right)^{8}\right)^{9}\right)^{10}
\end{aligned}
$$

Abbreviations:

$$
\begin{aligned}
\mathrm{f} & =\text { fun } \mathrm{fx} \mathrm{x}^{2}\left(\mathrm{f}^{1}\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right)^{3}\right)^{4} \\
\mathrm{id}_{y} & =\text { fn } \mathrm{y}=>\mathrm{y}^{2} \\
\mathrm{id}_{z} & =\text { fn } \mathrm{z}=>\mathrm{z}^{7}
\end{aligned}
$$

One guess of a 0-CFA analysis result:

$$
\begin{aligned}
& \begin{array}{l}
\widehat{C}_{\mid p}(1)=\{f\} \\
\widehat{C} \mid(2)=\emptyset
\end{array} \\
& \widehat{C}_{1 p}(6)=\{f\} \\
& \hat{\rho}_{\text {lp }}(f)=\{f\} \\
& \widehat{C}_{1 p}(2)=\emptyset \\
& \widehat{C}_{1 p}(7)=\emptyset \\
& \widehat{\rho}_{\mathrm{Ip}}(\mathrm{~g})=\{\mathrm{f}\} \\
& \widehat{C}_{l p}(3)=\left\{\mathrm{id}_{y}\right\} \\
& \widehat{C}_{1 \mathrm{p}}(8)=\left\{\mathrm{id}_{z}\right\} \\
& \widehat{\rho}_{\mathrm{lp}}(\mathrm{x})=\left\{\mathrm{id}_{y}, \mathrm{id}_{z}\right\} \\
& \widehat{C}_{1 p}(4)=\emptyset \\
& \widehat{C}_{1 p}(9)=\emptyset \\
& \widehat{\rho}_{\mathrm{lp}}(\mathrm{y})=\emptyset \\
& \widehat{C}_{\mid p}(5)=\{f\} \\
& \widehat{C}_{l p}(10)=\emptyset \\
& \widehat{\rho}_{l p}(z)=\emptyset
\end{aligned}
$$

Naively checking the solution gives rise to circularity:

To show

$$
\left(\widehat{\mathrm{C}}_{\mathrm{lp}}, \widehat{\rho}_{\mid p}\right) \models \operatorname{loop}
$$

we have (among others) to show

$$
\left(\widehat{C}_{\mathrm{I}}, \widehat{\rho}_{\mathrm{l}}\right)=\left(\mathrm{g}^{6}\left(\text { fn } \mathrm{z} \Rightarrow \mathrm{z}^{7}\right)^{8}\right)^{9}
$$

and to prove this we have (among others) to show

$$
\left(\widehat{\mathrm{C}}_{\mathrm{lp}}, \widehat{\rho}_{\mathrm{lp}}\right) \vDash\left(\mathrm{f}^{1} \quad\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right)^{3}\right)^{4}
$$

and to show this we have (among others) to show

$$
\left(\widehat{\mathrm{C}}_{\mathrm{lp}}, \widehat{\rho}_{\mathrm{lp}}\right) \vDash\left(\mathrm{f}^{1} \quad\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right)^{3}\right)^{4}
$$

because $\widehat{C}_{l p}(3) \subseteq \widehat{\rho}_{l p}(x), \widehat{C}_{l p}(4) \subseteq \widehat{C}_{l p}(4)$ and $f \in \widehat{\rho}_{l p}(f)$.

The Lesson

The co-inductive definition solves the circularity:

It allows us to assume that $\left(\widehat{C}_{\mathrm{lp}}, \widehat{\rho}_{\mathrm{lp}}\right) \models\left(\mathrm{f}^{1} \quad\left(\mathrm{fn} \mathrm{y}=>\mathrm{y}^{2}\right)^{3}\right)^{4}$ holds at the "inner level" and proving that it also holds at the "outer level"

An inductive definition does not give us this possibility!

Theoretical Properties:

- structural operational semantics
- semantic correctness
- the existence of least solutions

Choice of Semantics

- operational or denotational semantics?
- an operational semantics more easily models intensional properties
- small-step or big-step operational semantics?
- a small-step semantics allows us to reason about looping programs
- operational semantics based on environments or substitutions?
- an environment based semantics preserves the identity of functions

Configurations and Transitions

Semantic categories:

$$
\begin{aligned}
& v \in \text { Val values } \\
& \rho \in \mathbf{E n v} \text { environments }
\end{aligned}
$$

defined by:

$$
\begin{aligned}
& v::=c \mid \text { close } t \text { in } \rho \text { closures } \\
& \rho::=[] \mid \rho[x \mapsto v]
\end{aligned}
$$

Transitions have the form

$$
\rho \vdash e_{1} \rightarrow e_{2}
$$

meaning that one step of computation of the expression e_{1} in the environment ρ will transform it into e_{2}.

Transitions

$$
\begin{aligned}
& \rho \vdash x^{\ell} \rightarrow v^{\ell} \text { if } x \in \operatorname{dom}(\rho) \text { and } v=\rho(x) \\
& \rho \vdash\left(\mathrm{fn} x \Rightarrow e_{0}\right)^{\ell} \rightarrow\left(\operatorname{close}\left(\mathrm{fn} x=>e_{0}\right) \text { in } \rho_{0}\right)^{\ell} \\
& \quad \text { where } \rho_{0}=\rho \mid F V\left(\operatorname{fn} x \Rightarrow e_{0}\right) \\
& \rho \vdash\left(\text { fun } f x \Rightarrow e_{0}\right)^{\ell} \rightarrow\left(\operatorname{close}\left(\text { fun } f x \Rightarrow e_{0}\right) \text { in } \rho_{0}\right)^{\ell} \\
& \quad \text { where } \rho_{0}=\rho \mid F V\left(\text { fun } f x=>e_{0}\right)
\end{aligned}
$$

static scope!

Intermediate Expressions and Terms

$i e \in \operatorname{IExp} \quad$ intermediate expressions
$i t \in \operatorname{ITerm}$ intermediate terms
extending the syntax:

$$
\begin{aligned}
\text { ie }: & := \\
\text { it }: & i t^{\ell} \\
\text { in } & c|x| \text { fn } x \Rightarrow e_{0} \mid \text { fun } f x \Rightarrow e_{0} \mid i e_{1} i e_{2} \\
& \mid \text { if } i e_{0} \text { then } e_{1} \text { else } e_{2} \mid \text { let } x=i e_{1} \text { in } e_{2} \mid i e_{1} \text { op } i e_{2} \\
& \mid \text { close } t \text { in } \rho \mid \text { bind } \rho \text { in } i e
\end{aligned}
$$

The correct form of transitions

$$
\rho \vdash i e_{1} \rightarrow i e_{2}
$$

Transitions

$$
\begin{aligned}
& \frac{\rho \vdash i e_{1} \rightarrow i e_{1}^{\prime}}{\rho \vdash\left(i e_{1} i e_{2}\right)^{\ell} \rightarrow\left(i e_{1}^{\prime} i e_{2}\right)^{\ell}} \quad \frac{\rho \vdash i e_{2} \rightarrow i e_{2}^{\prime}}{\rho \vdash\left(v_{1}^{\ell_{1}} i e_{2}\right)^{\ell} \rightarrow\left(v_{1}^{\ell_{1}} i e_{2}^{\prime}\right)^{\ell}} \\
& \rho \vdash\left(\left(\text { close }\left(\text { fn } x=>e_{1}\right) \text { in } \rho_{1}\right)^{\ell_{1}} v_{2}^{\ell_{2}}\right)^{\ell} \rightarrow\left(\text { bind } \rho_{1}\left[x \mapsto v_{2}\right] \text { in } e_{1}\right)^{\ell} \\
& \rho \vdash\left(\left(\text { close }\left(\text { fun } f x \Rightarrow e_{1}\right) \text { in } \rho_{1}\right)^{\ell_{1}} v_{2}^{\ell_{2}}\right)^{\ell} \rightarrow\left(\text { bind } \rho_{2}\left[x \mapsto v_{2}\right] \text { in } e_{1}\right)^{\ell} \\
& \text { where } \rho_{2}=\rho_{1}\left[f \mapsto \text { close }\left(\text { fun } f x \Rightarrow e_{1}\right) \text { in } \rho_{1}\right] \\
& \rho_{1} \vdash i e_{1} \rightarrow i e_{1}^{\prime} \\
& \frac{\rho \vdash\left(\text { bind } \rho_{1} \text { in } i e_{1}\right)^{\ell} \rightarrow\left(\text { bind } \rho_{1} \text { in } i e_{1}^{\prime}\right)^{\ell}}{}
\end{aligned}
$$

$$
\rho \vdash\left(\operatorname{bind} \rho_{1} \text { in } v_{1}^{\ell_{1}}\right)^{\ell} \rightarrow v_{1}^{\ell}
$$

Example:

[] $\vdash\left(\left(\operatorname{fn} x=>x^{1}\right)^{2}\left(\text { fn } y \Rightarrow y^{3}\right)^{4}\right)^{5}$
$\rightarrow \quad\left(\left(\text { close }\left(f n x=>x^{1}\right) \text { in [] }\right)^{2}\left(f n y ~=>y^{3}\right)^{4}\right)^{5}$
$\rightarrow \quad\left(\left(\text { close }\left(\text { fn } x=>x^{1}\right) \text { in }[]\right)^{2}\left(\text { close }\left(\text { fn } y=>y^{3}\right) \text { in }[]\right)^{4}\right)^{5}$
$\rightarrow \quad\left(\right.$ bind $\left[\mathrm{x} \mapsto\left(\text { close }\left(f n \mathrm{y}=>\mathrm{y}^{3}\right) \text { in }[\mathrm{J})\right] \text { in } \mathrm{x}^{1}\right)^{5}$
$\rightarrow \quad$ (bind $\left[x \mapsto\left(\right.\right.$ close $\left(f n y=>y^{3}\right)$ in [])] in $\left.\left(\text { close }\left(f n y=>y^{3}\right) \text { in }[]\right)^{1}\right)^{5}$
$\rightarrow \quad\left(\text { close }\left(\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right) \text { in [] }\right)^{5}$

Transitions

$$
\begin{aligned}
& \frac{\rho \vdash i e_{0} \rightarrow i e_{0}^{\prime}}{\rho \vdash\left(\text { if } i e_{0} \text { then } e_{1} \text { else } e_{2}\right)^{\ell} \rightarrow\left(\text { if } i e_{0}^{\prime} \text { then } e_{1} \text { else } e_{2}\right)^{\ell}} \\
& \rho \vdash\left(\text { if true }{ }^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \rightarrow t_{1}^{\ell} \\
& \rho \vdash\left(\text { if false }{ }^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \rightarrow t_{2}^{\ell} \\
& \frac{\rho \vdash i e_{1} \rightarrow i e_{1}^{\prime}}{\rho \vdash\left(\text { let } x=i e_{1} \text { in } e_{2}\right)^{\ell} \rightarrow\left(\text { let } x=i e_{1}^{\prime} \text { in } e_{2}\right)^{\ell}} \\
& \rho \vdash\left(\text { let } x=v^{\ell_{1}} \text { in } e_{2}\right)^{\ell} \rightarrow\left(\text { bind }[x \mapsto v] \text { in } e_{2}\right)^{\ell} \\
& \frac{\rho \vdash i e_{1} \rightarrow i e_{1}^{\prime}}{\rho \vdash\left(i e_{1} \text { op } i e_{2}\right)^{\ell} \rightarrow\left(i e_{1}^{\prime} \text { op } i e_{2}\right)^{\ell} \quad \rho \vdash\left(v_{1}^{\ell_{1}} \text { op } i e_{2}\right)^{\ell} \rightarrow\left(v_{1}^{\ell_{1}} \text { op ie } e^{\prime}\right)^{\ell}} \\
& \rho \vdash\left(v_{1}^{\ell_{1}} \text { op } v_{2}^{\ell_{2}}\right)^{\ell} \rightarrow v^{\ell} \text { if } v=v_{1} \text { op } v_{2}
\end{aligned}
$$

Example:

```
[]\(\vdash\left(\right.\) let \(g=\left(\text { fun } f x \Rightarrow\left(f^{1}\left(\text { fn } y \Rightarrow y^{2}\right)^{3}\right)^{4}\right)^{5}\)
    in \(\left.\left(g^{6}\left(f n z=>z^{7}\right)^{8}\right)^{9}\right)^{10}\)
\(\rightarrow \quad\left(\text { let } g=f^{5} \text { in }\left(g^{6}\left(f n z \Rightarrow z^{7}\right)^{8}\right)^{9}\right)^{10}\)
\(\rightarrow \quad\) (bind \([\mathrm{g} \mapsto \mathrm{f}]\) in \(\left.\left(\mathrm{g}^{6}\left(\mathrm{fn} \mathrm{z}=>\mathrm{z}^{7}\right)^{8}\right)^{9}\right)^{10}\)
\(\rightarrow \quad\) (bind \([g \mapsto f]\) in \(\left.\left(f^{6}\left(f n z=z^{7}\right)^{8}\right)^{9}\right)^{10}\)
\(\rightarrow \quad\) (bind \([\mathrm{g} \mapsto \mathrm{f}]\) in \(\left.\left(\mathrm{f}^{6} \mathrm{id}_{z}^{8}\right)^{9}\right)^{10}\)
\(\rightarrow \quad\) (bind \([\mathrm{g} \mapsto \mathrm{f}]\) in (bind \([\mathrm{f} \mapsto \mathrm{f}]\left[\mathrm{x} \mapsto \mathrm{id} \mathrm{Z}_{z}\right]\) in \(\left.\left.\left(\mathrm{f}^{1}\left(\mathrm{fn} \mathrm{y}=\mathrm{y}^{2}\right)^{3}\right)^{4}\right)^{9}\right)^{10}\)
\(\rightarrow^{*} \quad\) (bind \([\mathrm{g} \mapsto \mathrm{f}]\) in (bind \([\mathrm{f} \mapsto \mathrm{f}]\left[\mathrm{x} \mapsto \mathrm{id}_{z}\right]\) in
(bind \([\mathrm{f} \mapsto \mathrm{f}]\left[\mathrm{x} \mapsto \mathrm{id}_{y}\right]\) in \(\left.\left.\left.\left(\mathrm{f}^{1}\left(\mathrm{fn} \mathrm{y}=>\mathrm{y}^{2}\right)^{3}\right)^{4}\right)^{4}\right)^{9}\right)^{10}\)
```

Abbreviations:

$$
\begin{aligned}
\mathbf{f} & =\text { close }\left(\text { fun } \mathrm{f} x=>\left(\mathrm{f}^{1}\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right)^{3}\right)^{4}\right) \text { in [] } \\
\mathbf{i d}_{y} & =\text { close }\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right) \text { in [] } \\
\mathbf{i d}_{z} & =\text { close }\left(\mathrm{fn} \mathrm{z} \mathrm{z}^{7}\right) \text { in [] }
\end{aligned}
$$

Semantic Correctness

A subject reduction result: an acceptable result of the analysis remains acceptable under evaluation

Analysis of intermediate expressions

$$
\begin{aligned}
& (\hat{\mathrm{C}}, \hat{\rho})=\left(\text { bind } \rho \text { in it } t_{0}^{\ell_{0}}\right)^{\ell} \\
& \underline{\text { iff }} \quad(\hat{\mathrm{C}}, \hat{\rho}) \models i t_{0}^{\ell_{0}} \wedge \hat{\mathrm{C}}\left(\ell_{0}\right) \subseteq \widehat{\mathrm{C}}(\ell) \wedge \rho \mathcal{R} \hat{\rho} \\
& (\widehat{\mathrm{C}}, \hat{\rho}) \mid=\left(\operatorname{close} t_{0} \text { in } \rho\right)^{\ell} \\
& \text { iff } \quad\left\{t_{0}\right\} \subseteq \widehat{\mathrm{C}}(\ell) \wedge \rho \mathcal{R} \hat{\rho}
\end{aligned}
$$

Correctness Relation

The global abstract environment, $\widehat{\rho}$ models all the local environments of the semantics

Correctness relation

$$
\mathcal{R}:(\mathbf{E n v} \times \widehat{\text { Env }}) \rightarrow\{\text { true, false }\}
$$

We demand that $\rho \mathcal{R} \hat{\rho}$ for all local environments, ρ, occurring in the intermediate expressions

Define

$$
\begin{aligned}
& \rho \mathcal{R} \hat{\rho} \quad \text { iff } \quad \forall x \in \operatorname{dom}(\rho) \subseteq \operatorname{dom}(\hat{\rho}) \forall t_{x} \forall \rho_{x}: \\
&\left(\rho(x)=\operatorname{close} t_{x} \text { in } \rho_{x}\right) \Rightarrow\left(t_{x} \in \hat{\rho}(x) \wedge \rho_{x} \mathcal{R} \hat{\rho}\right)
\end{aligned}
$$

Example:

Suppose that:

$$
\begin{aligned}
\rho & =\left[x \mapsto \text { close } t_{1} \text { in } \rho_{1}\right]\left[y \mapsto \text { close } t_{2} \text { in } \rho_{2}\right] \\
\rho_{1} & =[] \\
\rho_{2} & =\left[x \mapsto \text { close } t_{3} \text { in } \rho_{3}\right] \\
\rho_{3} & =[]
\end{aligned}
$$

Then $\rho \mathcal{R} \hat{\rho}$ amounts to $\left\{t_{1}, t_{3}\right\} \subseteq \widehat{\rho}(x) \wedge\left\{t_{2}\right\} \subseteq \widehat{\rho}(y)$.

Alternative definition of Correctness Relation

Split the definition of \mathcal{R} into two components:

$$
\begin{array}{ll}
\mathcal{V}: & (\text { Val } \times(\widehat{\operatorname{Env}} \times \widehat{\text { Val }})) \rightarrow\{\text { true }, \text { false }\} \\
\mathcal{R}: & (\text { Env } \times \widehat{\text { Env }}) \rightarrow\{\text { true }, \text { false }\}
\end{array}
$$

and define

$$
\begin{array}{rll}
v \mathcal{V}(\hat{\rho}, \widehat{v}) & \underline{\text { iff }} & \forall t \forall \rho:(v=\operatorname{close} t \text { in } \rho) \Rightarrow(t \in \widehat{v} \wedge \rho \mathcal{R} \hat{\rho}) \\
\rho \mathcal{R} \hat{\rho} & \text { iff } & \forall x \in \operatorname{dom}(\rho) \subseteq \operatorname{dom}(\widehat{\rho}): \rho(x) \mathcal{V}(\widehat{\rho}, \widehat{\rho}(x))
\end{array}
$$

Correctness Result

Formal details of Correctness Result

Theorem:

If $\rho \mathcal{R} \hat{\rho}$ and $\rho \vdash i e \rightarrow i e^{\prime}$ then $(\widehat{\mathrm{C}}, \widehat{\rho}) \models i e$ implies $(\widehat{\mathrm{C}}, \widehat{\rho}) \models i e^{\prime}$.

Intuitively:
If there is a possible evaluation of the program such that the function at a call point evaluates to some abstraction, then this abstraction has to be in the set of possible abstractions computed by the analysis.

Observe: the theorem expresses that all acceptable analysis results remain acceptable under evaluation!

Thus we do not rely on the existence of a least or "best" solution.

Proof of Correctness Result

We assume that $\rho \mathcal{R} \hat{\rho}$ and $(\widehat{\mathrm{C}}, \widehat{\rho})=i e$ and prove $(\widehat{\mathrm{C}}, \widehat{\rho}) \models i e^{\prime}$ by induction on the structure of the inference tree for $\rho \vdash i e \rightarrow i e^{\prime}$.

Most cases amount to inspecting the defining clause for $(\widehat{\mathrm{C}}, \widehat{\rho})=i e$.

This method of proof applies to all fixed points of a recursive definition and in particular also to the (more familiar least and) greatest fixed point(s).

Crucial fact: If $(\widehat{\mathrm{C}}, \widehat{\rho}) \vDash i t^{\ell_{1}}$ and $\widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \widehat{\mathrm{C}}\left(\ell_{2}\right)$ then $(\widehat{\mathrm{C}}, \widehat{\rho}) \equiv i t^{\ell_{2}}$.

Example:

Semantics:

[]$\vdash\left(\left(f n x=>x^{1}\right)^{2}\left(f n y=>y^{3}\right)^{4}\right)^{5} \rightarrow^{*}\left(\text { close }\left(f n y=>y^{3}\right) \text { in [] }\right)^{5}$

	$\left(\widehat{C}_{\mathrm{C}}, \widehat{\rho}_{\mathrm{e}}\right)$
1	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
2	$\left\{\mathrm{fn} \mathrm{x}=\mathrm{x}^{1}\right\}$
3	\emptyset
4	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
5	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
x	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
y	\emptyset

Analysis:

$\left(\widehat{C}_{e}, \hat{\rho}_{e}\right)=\left(\left(\text { fn } \mathrm{x}=>\mathrm{x}^{1}\right)^{2}\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{3}\right)^{4}\right)^{5}$

Correctness relation:
[] $\mathcal{R} \widehat{\rho}_{\mathrm{e}}$

Correctness theorem: $\left(\widehat{C}_{e}, \widehat{\rho}_{e}\right) \models\left(\text { close }\left(f n y=>y^{3}\right) \text { in [] }\right)^{5}$

Existence of Solutions

- Does each expression e admit a Control Flow Analysis?
i.e. does there exist $(\widehat{C}, \widehat{\rho})$ such that $(\widehat{C}, \widehat{\rho}) \models e$?
- Does each expression e have a "least" Control Flow Analysis?
i.e. does there exists $\left(\widehat{C}_{0}, \hat{\rho}_{0}\right)$ such that $\left(\widehat{C}_{0}, \widehat{\rho}_{0}\right) \models e$ and such that whenever ($\widehat{\mathrm{C}}, \widehat{\rho}) \models e$ then ($\widehat{\mathrm{C}}_{0}, \widehat{\rho}_{0}$) is "less than" ($\widehat{\mathrm{C}}, \widehat{\rho}$)?

Here "least" is with respect to the partial ordering

$$
\begin{aligned}
\left(\widehat{C}_{1}, \widehat{\rho}_{1}\right) \sqsubseteq\left(\widehat{C}_{2}, \widehat{\rho}_{2}\right) \quad \text { iff } & \left(\forall \ell \in \operatorname{Lab}: \widehat{C}_{1}(\ell) \subseteq \widehat{C}_{2}(\ell)\right) \wedge \\
& \left(\forall x \in \operatorname{Var}: \widehat{\rho}_{1}(x) \subseteq \widehat{\rho}_{2}(x)\right)
\end{aligned}
$$

Existence of Solutions (cont.)

Two answers:

- there exists algorithms for the efficient computation of least solutions for all expressions
- all intermediate expressions enjoy a Moore family property

A subset Y of a complete lattice $L=(L, \sqsubseteq)$ is a Moore family if and only if $\left(\prod Y^{\prime}\right) \in Y$ for all subsets Y^{\prime} of L

Proposition: The set $\{(\widehat{\mathrm{C}}, \widehat{\rho}) \mid(\widehat{\mathrm{C}}, \widehat{\rho}) \vDash i e\}$ is a Moore family for all intermediate expressions ie

Existence of Solutions (cont.)

All intermediate expressions admit a Control Flow Analysis
Let Y^{\prime} be the empty set; then $\rceil Y^{\prime}$ is an element of $\{(\widehat{\mathrm{C}}, \widehat{\rho}) \mid(\widehat{\mathrm{C}}, \widehat{\rho}) \models i e\}$ showing that there exists at least one analysis of $i e$.

All intermediate expressions have a least Control Flow Analysis
Let Y^{\prime} be the set $\{(\widehat{C}, \widehat{\rho}) \mid(\widehat{C}, \widehat{\rho}) \models i e\}$; then $\sqcap Y^{\prime}$ is an element of $\{(\widehat{C}, \widehat{\rho}) \mid$ ($\widehat{C}, \widehat{\rho}) \models i e\}$ so it will also be an analysis of $i e$. Clearly $\prod Y^{\prime} \sqsubseteq(\widehat{C}, \widehat{\rho})$ for all other analyses ($\widehat{C}, \widehat{\rho}$) of ie so it is the least analysis result.

Example:

$$
\begin{aligned}
& \left(\widehat{\mathrm{C}}_{\mathrm{e}}, \widehat{\rho}_{\mathrm{e}}^{\prime}\right) \models\left(\left(\mathrm{fnx}=>\mathrm{x}^{1}\right)^{2}\left(\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right)^{4}\right)^{5} \\
& \left(\widehat{\mathrm{C}}_{\mathrm{e}}^{\prime \prime}, \widehat{\rho}_{\mathrm{e}}^{\prime \prime}\right) \models\left(\left(\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right)^{2}\left(\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right)^{4}\right)^{5}
\end{aligned}
$$

The Moore family result ensures that

$\left(\widehat{\mathrm{C}}_{\mathrm{e}}{ }^{\prime} \sqcap \widehat{\mathrm{C}}_{\mathrm{e}}{ }^{\prime \prime}, \hat{\rho}_{\mathrm{e}}^{\prime} \sqcap \hat{\rho}_{\mathrm{e}}^{\prime \prime}\right) \models\left(\left(\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right)^{2}\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{3}\right)^{4}\right)^{5}$			
	($\mathrm{C}_{\mathrm{e}}, \widehat{\rho}_{\mathrm{e}}$)	$\left(\widehat{C}^{\prime}{ }^{\prime}, \widehat{\rho}_{e}{ }^{\prime}\right)$	$\left(\widehat{C}_{\mathrm{e}}{ }^{\prime \prime}, \widehat{\rho}_{\mathrm{e}}{ }^{\prime \prime}\right.$)
1	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
2	$\left\{\mathrm{fn} \mathrm{x}=\mathrm{x}^{1}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=\mathrm{x}^{1}\right\}$
3	\emptyset	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right\}$	$\left\{\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{3}\right\}$
4	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
5	$\left\{\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{3}\right\}$
x	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$
y	0	$\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{3}\right\}$

Coinduction versus Induction

The abstract Control Flow Analysis is defined coinductively
\vDash is the greatest fixed point of a function \mathcal{Q}
An alternative might be an inductive definition
\models^{\prime} is the least fixed point of the function \mathcal{Q}.
Proposition: There exists $e_{\star} \in \operatorname{Exp}$ such that $\left\{(\widehat{C}, \widehat{\rho}) \mid(\widehat{C}, \widehat{\rho}) \models^{\prime} e_{\star}\right\}$ is not a Moore family.

Syntax Directed 0-CFA Analysis

Reformulate the abstract specification:
(i) Syntax directed specification
(ii) Constructing a finite set of constraints
(iii) Compute the least solution of the set of constraints

Common Phenomenon

A specification $=_{A}$ is reformulated into a specification \models_{B} ensuring that

$$
(\widehat{\mathrm{C}}, \widehat{\rho}) \neq A e_{\star} \Leftarrow(\widehat{\mathrm{C}}, \widehat{\rho})=_{B} e_{\star}
$$

so that " $=_{B}$ " is a safe approximation to " $=_{A}$ " and hence the best (i.e. least) solution to " $==_{B} e_{\star}$ " will also be a solution to " $=_{A} e_{\star}$ ".

If additionally

$$
(\widehat{\mathrm{C}}, \widehat{\rho}) \neq A e_{\star} \Rightarrow(\widehat{\mathrm{C}}, \widehat{\rho})=_{B} e_{\star}
$$

then we can be assured that no solutions are lost and hence the best (i.e. least) solution to " $=_{B} e_{\star}$ " will also be the best (i.e. least) solution to " $=A_{A} e_{\star}$ ".

Syntax Directed Specification (1)

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \widehat{\rho}) \neq{ }_{s}\left(\mathrm{fn} x \Rightarrow e_{0}\right)^{\ell} \\
& \text { iff } \quad\left\{\mathrm{fn} x=>e_{0}\right\} \subseteq \widehat{\mathrm{C}}(\ell) \wedge \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \models s e_{0} \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \neq{ }_{s}\left(\text { fun } f x \Rightarrow e_{0}\right)^{\ell} \\
& \text { iff }\left\{\text { fun } f x=>e_{0}\right\} \subseteq \widehat{C}(\ell) \wedge \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \models s e_{0} \wedge \quad\left\{\text { fun } f x \Rightarrow e_{0}\right\} \subseteq \hat{\rho}(f) \\
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s}\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff }(\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s} t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \models{ }_{s} t_{2}^{\ell_{2}} \wedge \\
& \left(\forall\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{C}\left(\ell_{1}\right):\right. \\
& \left.\widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{0}\right) \subseteq \widehat{\mathrm{C}}(\ell) \quad \square\right) \wedge \\
& \left(\forall\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{C}\left(\ell_{1}\right):\right. \\
& \left.\widehat{C}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{C}\left(\ell_{0}\right) \subseteq \widehat{C}(\ell) \quad \square\right)
\end{aligned}
$$

Syntax Directed Specification (2)

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s} c^{\ell} \text { always } \\
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s} x^{\ell} \quad \underline{\text { iff }} \quad \widehat{\rho}(x) \subseteq \widehat{C}(\ell) \\
& \left.(\widehat{\mathrm{C}}, \widehat{\rho}) \mid=s_{s} \text { (if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\hat{\mathrm{C}}, \hat{\rho})=s t_{0}^{\ell_{0}} \wedge \\
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s} t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s} t_{2}^{\ell_{2}} \wedge \\
& \widehat{C}\left(\ell_{1}\right) \subseteq \widehat{C}(\ell) \wedge \widehat{C}\left(\ell_{2}\right) \subseteq \widehat{C}(\ell) \\
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s}\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s} t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s} t_{2}^{\ell_{2}} \wedge \\
& \widehat{C}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{C}\left(\ell_{2}\right) \subseteq \widehat{C}(\ell) \\
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s}\left(t_{1}^{\ell_{1}} \text { op } t_{2}^{\ell_{2}}\right)^{\ell} \quad \text { iff } \quad(\widehat{\mathrm{C}}, \widehat{\rho})={ }_{s} t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \models{ }_{s} t_{2}^{\ell_{2}}
\end{aligned}
$$

Example: Ioop

$$
\begin{aligned}
& \left(\text { let } g=\left(\text { fun } f x \Rightarrow\left(f^{1}\left(\text { fn } y=y^{2}\right)^{3}\right)^{4}\right)^{5}\right. \\
& \text { in } \left.\left(g^{6}\left(\text { fn } z=z^{7}\right)^{8}\right)^{9}\right)^{10}
\end{aligned}
$$

Abbreviations:

$$
\begin{aligned}
\mathrm{f} & =\text { fun } \mathrm{fx} \mathrm{x}_{\mathrm{l}}\left(\mathrm{f}^{1}\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right)^{3}\right)^{4} \\
\mathrm{id}_{y} & =\text { fn } \mathrm{y} \Rightarrow \mathrm{y}^{2} \\
\mathrm{id}_{z} & =\text { fn } \mathrm{z} \Rightarrow \mathrm{z}^{7}
\end{aligned}
$$

One guess of a 0-CFA analysis result:

$$
\begin{aligned}
& \begin{array}{l}
\widehat{C}_{\mid p}(1)=\{f\} \\
\widehat{C} \mid(2)=\emptyset
\end{array} \\
& \widehat{C}_{1 p}(6)=\{f\} \\
& \hat{\rho}_{\mathrm{lp}}(\mathrm{f})=\{\mathrm{f}\} \\
& \hat{C}_{\mathrm{lp}}(2)=\emptyset \\
& \widehat{C}_{1 p}(7)=\emptyset \\
& \widehat{\rho}_{\mathrm{Ip}}(\mathrm{~g})=\{\mathrm{f}\} \\
& \hat{\mathrm{C}}_{1 p}(3)=\left\{\mathrm{id}_{y}\right\} \\
& \widehat{C}_{1 \mathrm{p}}(8)=\left\{\mathrm{id}_{z}\right\} \\
& \widehat{\rho}_{\mathrm{lp}}(\mathrm{x})=\left\{\mathrm{id}_{y}, \mathrm{id}_{z}\right\} \\
& \widehat{C}_{1 p}(4)=\emptyset \\
& \widehat{C}_{1 p}(9)=\emptyset \\
& \widehat{\rho}_{\mathrm{lp}}(\mathrm{y})=\emptyset \\
& \widehat{C}_{1 p}(5)=\{f\} \\
& \widehat{C}_{\mid p}(10)=\emptyset \\
& \widehat{\rho}_{l p}(z)=\emptyset
\end{aligned}
$$

Example: Checking the solution

To show

$$
\left(\widehat{\mathrm{C}}_{\mathrm{Ip}}, \widehat{\rho}_{\mathrm{Ip}}\right) \models{ }_{s} \text { loop }
$$

we have (among others) to show

$$
\left(\widehat{C}_{\mid p}, \widehat{\rho}_{\mathrm{lp}}\right) \models_{s}\left(\mathrm{~g}^{6}\left(\mathrm{fn} \mathrm{z} \Rightarrow \mathrm{z}^{7}\right)^{8}\right)^{9}
$$

and

$$
\left(\widehat{C}_{\mid p}, \widehat{\rho}_{\mathrm{lp}}\right)=_{s}\left(\mathrm{f}^{1} \quad\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right)^{3}\right)^{4}
$$

and this is straightforward.
The Lesson

No need for co-induction because the definition is syntax-directed

Preservation of Solutions

Define $\left(\hat{C}_{\star}^{\top}, \hat{\rho}_{\star}^{\top}\right)$ by:

$$
\begin{aligned}
& \widehat{\mathrm{C}}_{\star}^{\top}(\ell)= \begin{cases}\emptyset & \text { if } \ell \notin \mathbf{L a b}_{\star} \\
\mathbf{T e r m}_{\star} & \text { if } \ell \in \mathbf{L a b}_{\star}\end{cases} \\
& \widehat{\rho}_{\star}^{\top}(x)= \begin{cases}\emptyset & \text { if } x \notin \mathbf{V a r}_{\star} \\
\text { Term }_{\star} & \text { if } x \in \mathbf{V a r}_{\star}\end{cases}
\end{aligned}
$$

Then all the solutions to " $=_{s} e_{\star}$ " that are "less than" ($\widehat{\mathrm{C}}_{\star}^{\top}, \widehat{\rho}_{\star}^{\top}$) are solutions to " $1=e_{\star}$ " as well:

Proposition: If $(\widehat{\mathrm{C}}, \widehat{\rho}) \models_{s} e_{\star}$ and $(\widehat{\mathrm{C}}, \widehat{\rho}) \sqsubseteq\left(\widehat{\mathrm{C}}_{\star}^{\top}, \widehat{\rho}_{\star}^{\top}\right)$ then $(\widehat{\mathrm{C}}, \widehat{\rho}) \models e_{\star}$.
(That $(\widehat{\mathrm{C}}, \widehat{\rho}) \sqsubseteq\left(\hat{\mathrm{C}}_{\star}^{\top}, \widehat{\rho}_{\star}^{\top}\right)$ means that $(\widehat{\mathrm{C}}, \widehat{\rho})$ lives in a "closed universe".)

Proposition:
$\left\{(\hat{C}, \hat{\rho}) \sqsubseteq\left(\hat{C}_{\star}^{\top}, \hat{\rho}_{\star}^{\top}\right) \mid(\hat{C}, \hat{\rho}) \models_{s} e_{\star}\right\}$ is a Moore family.

Corollaries:

- each expression e_{\star} has a Control Flow Analysis that is "less than" ($\widehat{\mathrm{C}}_{\star}^{\top}, \widehat{\rho}_{\star}^{\top}$), and
- each expression e_{\star} has a "least" Control Flow Analysis that is "less than" $\left(\widehat{\mathrm{C}}_{\star}^{\top}, \widehat{\rho}_{\star}^{\top}\right)$.

Constraint Based 0-CFA Analysis

$\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$ is a set of constraints of the form

$$
\begin{gathered}
l h s \subseteq r h s \\
\{t\} \subseteq r h s^{\prime} \Rightarrow l h s \subseteq r h s
\end{gathered}
$$

where

$$
\begin{aligned}
& \text { rhs }::=C(\ell) \mid r(x) \\
& \text { Ihs }::=C(\ell)|r(x)|\{t\}
\end{aligned}
$$

and all occurrences of t are of the form $\mathrm{fn} x \Rightarrow e_{0}$ or fun $f x \Rightarrow e_{0}$

Constraint Based Control Flow Analysis (1)

$$
\begin{aligned}
\mathcal{C}_{\star} \llbracket\left(\text { fn } x \Rightarrow e_{0}\right)^{\ell} \rrbracket= & \left\{\left\{\text { fn } x \Rightarrow e_{0}\right\} \subseteq C(\ell)\right\} \cup \mathcal{C}_{\star} \llbracket e_{0} \rrbracket \\
\mathcal{C}_{\star} \llbracket\left(\text { fun } f x \Rightarrow e_{0}\right)^{\ell} \rrbracket & =\left\{\left\{\text { fun } f x \Rightarrow e_{0}\right\} \subseteq C(\ell)\right\} \cup \mathcal{C}_{\star} \llbracket e_{0} \rrbracket \\
& \cup\left\{\left\{\text { fun } f x \Rightarrow e_{0}\right\} \subseteq r(f)\right\} \\
\mathcal{C}_{\star} \llbracket\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \rrbracket & =\mathcal{C}_{\star} \llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{2}^{\ell_{2}} \rrbracket \\
& \cup\left\{\{t\} \subseteq C\left(\ell_{1}\right) \Rightarrow C\left(\ell_{2}\right) \subseteq r(x) \mid t=\left(\text { fn } x \Rightarrow t_{0}^{\ell_{0}}\right) \in \text { Term }_{\star}\right\} \\
& \cup\left\{\{t\} \subseteq C\left(\ell_{1}\right) \Rightarrow C\left(\ell_{0}\right) \subseteq C(\ell) \mid t=\left(\text { fn } x \Rightarrow t_{0}^{\ell_{0}}\right) \in \text { Term }_{\star}\right\} \\
& \cup\left\{\{t\} \subseteq C\left(\ell_{1}\right) \Rightarrow C\left(\ell_{2}\right) \subseteq r(x) \mid t=\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}\right) \in \text { Term }_{\star}\right\} \\
& \cup\left\{\{t\} \subseteq C\left(\ell_{1}\right) \Rightarrow C\left(\ell_{0}\right) \subseteq C(\ell) \mid t=\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}\right) \in \text { Term }_{\star}\right\}
\end{aligned}
$$

Constraint Based Control Flow Analysis (2)

$$
\begin{aligned}
& \mathcal{C}_{\star} \llbracket c^{\ell} \rrbracket=\emptyset \\
& \mathcal{C}_{\star} \llbracket x^{\ell} \rrbracket=\{r(x) \subseteq C(\ell)\} \\
& \mathcal{C}_{\star} \llbracket\left(\text { if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \rrbracket=\mathcal{C}_{\star} \llbracket t_{0}^{\ell_{0}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star} \llbracket \Vdash_{2}^{\ell_{2}} \rrbracket \\
& \cup\left\{\mathrm{C}\left(\ell_{1}\right) \subseteq \mathrm{C}(\ell)\right\} \\
& \cup\left\{C\left(\ell_{2}\right) \subseteq C(\ell)\right\} \\
& \mathcal{C}_{\star} \llbracket\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell} \rrbracket=\mathcal{C}_{\star} \llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{2}^{\ell_{2}} \rrbracket \\
& \cup\left\{C\left(\ell_{1}\right) \subseteq r(x)\right\} \cup\left\{C\left(\ell_{2}\right) \subseteq C(\ell)\right\} \\
& \mathcal{C}_{\star} \llbracket\left(t_{1}^{\ell_{1}} \text { op } t_{2}^{\ell_{2}}\right)^{\ell} \rrbracket=\mathcal{C}_{\star} \llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{2}^{\ell_{2}} \rrbracket
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \mathcal{C}_{\star} \mathbb{I}\left(\left(\text { fn } x \Rightarrow x^{1}\right)^{2}\left(f n y=y^{3}\right)^{4}\right)^{5} \rrbracket= \\
& \quad\left\{\left\{f n x=x^{1}\right\} \subseteq C(2),\right. \\
& r(x) \subseteq C(1), \\
& \left\{\text { fn } y \Rightarrow y^{3}\right\} \subseteq C(4), \\
& r(y) \subseteq C(3), \\
& \left\{\text { fn } x \Rightarrow x^{1}\right\} \subseteq C(2) \Rightarrow C(4) \subseteq r(x), \\
& \\
& \left\{\text { fn } x \Rightarrow x^{1}\right\} \subseteq C(2) \Rightarrow C(1) \subseteq C(5), \\
& \left\{\text { fn } y \Rightarrow y^{3}\right\} \subseteq C(2) \Rightarrow C(4) \subseteq r(y), \\
& \\
& \left.\left\{\text { fn } y \Rightarrow y^{3}\right\} \subseteq C(2) \Rightarrow C(3) \subseteq C(5)\right\}
\end{aligned}
$$

Preservation of Solutions

Translating syntactic entities to sets of terms:

$$
\begin{aligned}
(\widehat{C}, \widehat{\rho}) \llbracket C(\ell) \rrbracket & =\widehat{C}(\ell) \\
(\widehat{C}, \widehat{\rho}) \llbracket r(x) \rrbracket & =\widehat{\rho}(x) \\
(\widehat{\mathrm{C}}, \widehat{\rho}) \llbracket\{t\} \rrbracket & =\{t\}
\end{aligned}
$$

Satisfaction relation for constraints: $(\hat{\mathrm{C}}, \widehat{\rho}) \not \models_{c}$ (Ihs $\left.\subseteq r h s\right)$

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \widehat{\rho}) \neq_{c}(I h s \subseteq r h s) \\
& \quad \text { iff } \quad(\widehat{\mathrm{C}}, \widehat{\rho}) \llbracket I h s \rrbracket \subseteq(\widehat{\mathrm{C}}, \widehat{\rho}) \llbracket r h s \rrbracket \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \neq_{c}\left(\{t\} \subseteq r h s^{\prime} \Rightarrow I h s \subseteq r h s\right) \\
& \frac{\text { iff }}{\vee} \quad\left(\{t\} \subseteq(\widehat{\mathrm{C}}, \widehat{\rho}) \llbracket r h s^{\prime} \rrbracket \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \llbracket \prime h s \rrbracket \subseteq(\widehat{\mathrm{C}}, \widehat{\rho}) \llbracket r h s \rrbracket\right) \\
& \quad\left(\{t\} \nsubseteq(\widehat{\mathrm{C}}, \widehat{\rho}) \llbracket r h s^{\prime} \rrbracket\right)
\end{aligned}
$$

Proposition: $(\widehat{\mathrm{C}}, \widehat{\rho}) \models_{s} e_{\star}$ if and only if $(\widehat{\mathrm{C}}, \widehat{\rho}) \models_{c} \mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$.

Solving the Constraints (1)

Input: a set of constraints $\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$
Output: the least solution ($\widehat{\mathrm{C}}, \widehat{\rho}$) to the constraints
Data structures: a graph with one node for each $C(\ell)$ and $r(x)$ (where $\ell \in \operatorname{Lab}_{\star}$ and $\left.x \in \operatorname{Var}_{\star}\right)$ and zero, one or two edges for each constraint in $\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$

- W: the worklist of the nodes whose outgoing edges should be traversed
- D: an array that for each node gives an element of $\widehat{\mathrm{Val}}_{\star}$
- E: an array that for each node gives a list of constraints influenced (and outgoing edges)
Auxiliary procedure:

$$
\begin{aligned}
\text { procedure } \operatorname{add}(q, d) \text { is if } \neg(d \subseteq \mathrm{D}[q]) \text { then } & \mathrm{D}[q]:=\mathrm{D}[q] \cup d ; \\
& \mathrm{W}:=\operatorname{cons}(q, \mathrm{~W}) ;
\end{aligned}
$$

Solving the Constraints (2)

Step 1 Initialisation
W:= nil;
for q in Nodes do $\mathrm{D}[q]:=\emptyset ; \mathrm{E}[q]:=$ nil;
Step 2 Building the graph for $c c$ in $\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket \mathrm{do}$

$$
\text { case } c c \text { of }\{t\} \subseteq p: \operatorname{add}(p,\{t\})
$$

$$
p_{1} \subseteq p_{2}: \mathbb{E}\left[p_{1}\right]:=\operatorname{cons}\left(c c, \mathbb{E}\left[p_{1}\right]\right)
$$

$$
\{t\} \subseteq p \Rightarrow p_{1} \subseteq p_{2}: \quad \mathbb{E}\left[p_{1}\right]:=\operatorname{cons}\left(c c, \mathbb{E}\left[p_{1}\right]\right)
$$

$\mathrm{E}[p]:=\operatorname{cons}(c c, \mathrm{E}[p]) ;$
Step 3 Iteration
while $W \neq$ nil do
$q:=$ head $(\mathrm{W}) ; \mathrm{W}:=\operatorname{tail}(\mathrm{W}) ;$
for $c c$ in $E[q]$ do
case $c c$ of $p_{1} \subseteq p_{2}: \operatorname{add}\left(p_{2}, \mathrm{D}\left[p_{1}\right]\right)$;
$\{t\} \subseteq p \Rightarrow p_{1} \subseteq p_{2}:$ if $t \in \mathrm{D}[p]$ then $\operatorname{add}\left(p_{2}, \mathrm{D}\left[p_{1}\right]\right) ;$
Step 4 Recording the solution for ℓ in Lab_{\star} do $\widehat{C}(\ell):=\mathrm{D}[\mathrm{C}(\ell)]$; for x in $\operatorname{Var}_{\star}$ do $\widehat{\rho}(x):=\mathrm{D}[\mathrm{r}(x)]$;

Example:

Initialisation of data structures

| p | $\mathrm{D}[p]$ | $\mathrm{E}[p]$ |
| :---: | :---: | :--- | :--- |
| $\mathrm{C}(1)$ | \emptyset | $\left[\mathrm{id}_{x} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(1) \subseteq \mathrm{C}(5)\right]$ |
| $\mathrm{C}(2)$ | id_{x} | $\left[\mathrm{id}_{y} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(3) \subseteq \mathrm{C}(5), \quad \mathrm{id}_{y} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(4) \subseteq \mathrm{r}(\mathrm{y})\right.$, |
| | $\left.\mathrm{id} x \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(1) \subseteq \mathrm{C}(5), \quad \mathrm{id}_{x} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(4) \subseteq \mathrm{r}(\mathrm{x})\right]$ | |
| $\mathrm{C}(3)$ | \emptyset | $\left[\mathrm{id}_{y} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(3) \subseteq \mathrm{C}(5)\right] \quad$ |
| $\mathrm{C}(4)$ | id_{y} | $\left[\mathrm{id}_{y} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(4) \subseteq \mathrm{r}(\mathrm{y}), \quad \mathrm{id}_{x} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(4) \subseteq \mathrm{r}(\mathrm{x})\right]$ |
| $\mathrm{C}(5)$ | \emptyset | $[1]$ |
| $\mathrm{r}(\mathrm{x})$ | \emptyset | $[\mathrm{r}(\mathrm{x}) \subseteq \mathrm{C}(1)]$ |
| $\mathrm{r}(\mathrm{y})$ | \emptyset | $[\mathrm{r}(\mathrm{y}) \subseteq \mathrm{C}(3)]$ |

Example:

Iteration steps

W	$[\mathrm{C}(4), \mathrm{C}(2)]$	$[\mathrm{r}(\mathrm{x}), \mathrm{C}(2)]$	$[\mathrm{C}(1), \mathrm{C}(2)]$	$[\mathrm{C}(5), \mathrm{C}(2)]$	$[\mathrm{C}(2)]$	[]
p	$\mathrm{D}[p]$	$\mathrm{D}[p]$	$\mathrm{D}[p]$	$\mathrm{D}[p]$	$\mathrm{D}[p]$	$\mathrm{D}[p]$
$\mathrm{C}(1)$	\emptyset	\emptyset	id_{y}	id_{y}	id_{y}	id_{y}
$\mathrm{C}(2)$	id_{x}	id_{x}	id_{x}	id_{x}	id_{x}	id_{x}
$\mathrm{C}(3)$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
$\mathrm{C}(4)$	id_{y}	id_{y}	id_{y}	id_{y}	id_{y}	id_{y}
$\mathrm{C}(5)$	\emptyset	\emptyset	\emptyset	id_{y}	id_{y}	id_{y}
$\mathrm{r}(\mathrm{x})$	\emptyset	id_{y}	id_{y}	id_{y}	id_{y}	id_{y}
$\mathrm{r}(\mathrm{y})$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

Correctness:

Given input $\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$ the worklist algorithm terminates and the result $(\widehat{\mathrm{C}}, \widehat{\rho})$ produced by the algorithm satisfies

$$
(\widehat{C}, \hat{\rho})=\prod\left\{\left(\widehat{C}^{\prime}, \hat{\rho}^{\prime}\right) \mid\left(\hat{C}^{\prime}, \hat{\rho}^{\prime}\right) \models_{c} \mathcal{C}_{\star} \llbracket e_{\star} \rrbracket\right\}
$$

and hence it is the least solution to $\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$.

Complexity:

The algorithm takes at most $O\left(n^{3}\right)$ steps if the original expression e_{\star} has size n.

Adding Data Flow Analysis

Idea: extend the set $\widehat{\text { Val }}$ to contain other abstract values than just abstractions

- powerset (possibly finite)
- complete lattice (possibly satisfying Ascending Chain Condition)

Abstract Values as Powersets

Let Data be a set of abstract data values (i.e. abstract properties of booleans and integers)

$$
\widehat{v} \in \widehat{\mathrm{Val}}_{d}=\mathcal{P}(\text { Term } \cup \text { Data }) \quad \text { abstract values }
$$

For each constant $c \in$ Const we need an element $d_{c} \in$ Data

For each operator $o p \in \mathbf{O p}$ we need a total function

$$
\widehat{\mathrm{op}}: \widehat{\mathbf{V a l}}_{d} \times \widehat{\mathbf{V a l}}_{d} \rightarrow \widehat{\mathbf{V a l}}_{d}
$$

typically

$$
\widehat{v}_{1} \widehat{o p} \widehat{v}_{2}=\bigcup\left\{d_{o p}\left(d_{1}, d_{2}\right) \mid d_{1} \in \widehat{v}_{1} \cap \text { Data, } d_{2} \in \widehat{v}_{2} \cap \text { Data }\right\}
$$

for some $d_{o p}$: Data \times Data $\rightarrow \mathcal{P}$ (Data)

Example: Detection of Signs Analysis

Data $_{\text {sign }}=\{t \mathrm{tt}, \mathrm{ff},-, 0,+\}$
$d_{\text {true }}=\mathrm{tt}$
$d_{7}=+$
$\widehat{+}$ is defined from

d_{+}	tt	ff	-	0	+
tt	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
ff	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
-	\emptyset	\emptyset	$\{-\}$	$\{-\}$	$\{-, 0,+\}$
0	\emptyset	\emptyset	$\{-\}$	$\{0\}$	$\{+\}$
+	\emptyset	\emptyset	$\{-, 0,+\}$	$\{+\}$	$\{+\}$

Abstract Values as Powersets (1)

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \widehat{\rho}) \neq{ }_{d}\left(\mathrm{fn} x=>e_{0}\right)^{\ell} \quad \text { iff } \quad\left\{\mathrm{fn} x=>e_{0}\right\} \subseteq \widehat{\mathrm{C}}(\ell) \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \neq{ }_{d}\left(\text { fun } f x \Rightarrow e_{0}\right)^{\ell} \quad \text { iff } \quad\left\{\text { fun } f x \Rightarrow e_{0}\right\} \subseteq \widehat{C}(\ell) \\
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{d}\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff }(\widehat{\mathrm{C}}, \widehat{\rho})={ }_{d} t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho})={ }_{d} t_{2}^{\ell_{2}} \wedge \\
& \left(\forall\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{C}\left(\ell_{1}\right):\right. \\
& (\widehat{C}, \widehat{\rho})={ }_{d} t_{0}^{\ell_{0}} \wedge \\
& \left.\widehat{C}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{C}\left(\ell_{0}\right) \subseteq \widehat{C}(\ell)\right) \wedge \\
& \left(\forall\left(\text { fun } f x=>t_{0}^{\ell_{0}}\right) \in \widehat{C}\left(\ell_{1}\right):\right. \\
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{d} t_{0}^{\ell_{0}} \wedge \\
& \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{0}\right) \subseteq \widehat{\mathrm{C}}(\ell) \wedge \\
& \left.\left\{\text { fun } f x=>t_{0}^{\ell_{0}}\right\} \subseteq \widehat{\rho}(f)\right)
\end{aligned}
$$

Abstract Values as Powersets (2)

$$
\begin{aligned}
& (\widehat{C}, \widehat{\rho}) \models{ }_{d} c^{\ell} \quad \text { iff } \quad\left\{d_{c}\right\} \subseteq \widehat{C}(\ell) \\
& (\widehat{C}, \widehat{\rho}) \models{ }_{d} x^{\ell} \quad \text { iff } \quad \hat{\rho}(x) \subseteq \widehat{C}(\ell) \\
& \left.(\widehat{\mathrm{C}}, \widehat{\rho}) \models_{d} \text { (if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\hat{C}, \hat{\rho}) \models{ }_{d} t_{0}^{\ell_{0}} \wedge \\
& \left(d_{\text {true }} \in \widehat{\mathrm{C}}\left(\ell_{0}\right) \Rightarrow\left((\widehat{\mathrm{C}}, \hat{\rho}) \models_{d} t_{1}^{\ell_{1}} \wedge \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \widehat{\mathrm{C}}(\ell)\right)\right) \wedge \\
& \left(d_{\text {false }} \in \widehat{\mathrm{C}}\left(\ell_{0}\right) \Rightarrow\left((\widehat{\mathrm{C}}, \widehat{\rho})={ }_{d} t_{2}^{\ell_{2}} \wedge \hat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \hat{\mathrm{C}}(\ell)\right)\right) \\
& (\widehat{C}, \widehat{\rho}) \models_{d}\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff }(\widehat{C}, \widehat{\rho}) \models_{d} t_{1}^{\ell_{1}} \wedge(\widehat{C}, \widehat{\rho}) \models_{d} t_{2}^{\ell_{2}} \wedge \widehat{C}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{C}\left(\ell_{2}\right) \subseteq \widehat{C}(\ell) \\
& (\widehat{C}, \widehat{\rho}) \models_{d}\left(t_{1}^{\ell_{1}} \text { op } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff }(\widehat{C}, \widehat{\rho}) \models_{d} t_{1}^{\ell_{1}} \wedge(\widehat{C}, \widehat{\rho}) \models_{d} t_{2}^{\ell_{2}} \wedge \widehat{C}\left(\ell_{1}\right) \widehat{o p} \hat{C}\left(\ell_{2}\right) \subseteq \widehat{C}(\ell)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { (let } f=\left(\text { fn } x=>\left(\text { if }\left(x^{1}>0^{2}\right)^{3} \text { then }\left(\text { fn } y \Rightarrow y^{4}\right)^{5}\right.\right. \\
& \text { else } \left.\left.\left(\text { fn } z=>5^{6}\right)^{7}\right)^{8}\right)^{9} \\
& \text { in } \left.\left(\left(f^{10} 3^{11}\right)^{12} 0^{13}\right)^{14}\right)^{15}
\end{aligned}
$$

A pure 0-CFA analysis will not be able to discover that the else-branch of the conditional will never be executed.

When we combine the analysis with a Detection of Signs Analysis then the analysis can determine that only $f n y \Rightarrow y^{4}$ is a possible abstraction at label 12 .

Example:

	($\widehat{C}, \widehat{\rho}$)	($\widehat{C}, \widehat{\rho}$)
1	\emptyset	\{+\}
2	\emptyset	\{0\}
3	\emptyset	$\{\mathrm{tt}\}$
4	\emptyset	\{0\}
5	$\left\{\mathrm{fn} \mathrm{y} \quad \mathrm{P} \mathrm{y}^{4}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right\}$
6	\emptyset	\emptyset
7	$\left\{\mathrm{fn} \mathrm{z}=>25^{6}\right\}$	\emptyset
8	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right.$, fn $\left.\mathrm{z} \rightarrow 25^{6}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right\}$
9	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$
10	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$
11	\emptyset	\{+\}
12	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right.$, fn $\left.\mathrm{z}=>25^{6}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=\mathrm{y}^{4}\right\}$
13	\emptyset	\{0\}
14	\emptyset	\{0\}
15	\emptyset	\{0\}
f	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$
x	\emptyset	$\{+\}$
y	\emptyset	$\{0\}$
z	\emptyset	\emptyset

Abstract Values as Complete Lattices

A monotone structure consists of:

- a complete lattice L, and
- a set \mathcal{F} of monotone functions of $L \times L \rightarrow L$.

An instance of a monotone structure consists of the structure (L, \mathcal{F}) and

- a mapping ι. from the constants $c \in$ Const to values in L, and
- a mapping f. from the binary operators $o p \in \mathbf{O p}$ to functions of \mathcal{F}.

Example:

A monotone structure corresponding to the previous development will have L to be \mathcal{P} (Data) and \mathcal{F} to be the monotone functions of $\mathcal{P}($ Data $) \times$ \mathcal{P} (Data) $\rightarrow \mathcal{P}$ (Data).

(L satisfies the Ascending Chain Property iff Data is finite.)

An instance of the monotone structure is then obtained by taking

$$
\iota_{c}=\left\{d_{c}\right\}
$$

for all constants c (and with $d_{c} \in \mathbb{D}$ ata as above) and

$$
f_{o p}\left(l_{1}, l_{2}\right)=\bigcup\left\{d_{o p}\left(d_{1}, d_{2}\right) \mid d_{1} \in l_{1}, d_{2} \in l_{2}\right\}
$$

for all binary operators op (and where $d_{o p}$: Data \times Data $\rightarrow \mathcal{P}$ (Data) is as above).

Example: A monotone structure for Constant Propagation Analysis will have L to be $\mathbf{Z}_{\perp}^{\top} \times \mathcal{P}(\{t \mathrm{tt}, \mathrm{ff}\})$ and \mathcal{F} to be the monotone functions of $L \times L \rightarrow L$.

An instance of the monotone structure is obtained by taking e.g. $\iota_{7}=$ $(7, \emptyset)$ and $\iota_{\text {true }}=(\perp,\{\mathrm{tt}\})$. For a binary operator as + we can take:

Abstract Domains

For the Control Flow Analysis:

$$
\begin{array}{lll}
\widehat{v} \in \widehat{\text { Val }} & =\mathcal{P}(\text { Term }) & \text { abstract values } \\
\hat{\rho} \in \widehat{\text { Env }} & =\text { Var } \rightarrow \widehat{\text { Val }} & \text { abstract environments } \\
\widehat{C} \in \widehat{\text { Cache }} & =\text { Lab } \rightarrow \widehat{\text { Val }} & \text { abstract caches }
\end{array}
$$

For the Data Flow Analysis:
$\begin{array}{lll}\widehat{d} \in \widehat{\text { Data }}=L & \text { abstract data values } \\ \widehat{\delta} \in \widehat{\mathbf{D E n v}}=\widehat{\operatorname{Var}} \rightarrow \widehat{\mathbf{D a t a}} & \text { abstract data environments } \\ \hat{\mathrm{D}} \in \widehat{\mathbf{D C a c h e}}=\widehat{\text { Lab }} \rightarrow \widehat{\mathbf{D a t a}} & \text { abstract data caches }\end{array}$

Abstract Values as Complete Lattices (1)

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \hat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta}) \neq_{D}\left(\mathrm{fn} x \Rightarrow e_{0}\right)^{\ell} \quad \underline{\text { iff }} \quad\left\{\mathrm{fn} x \Rightarrow e_{0}\right\} \subseteq \widehat{\mathrm{C}}(\ell) \\
& (\widehat{C}, \widehat{D}, \widehat{\rho}, \widehat{\delta}) \models_{D}\left(\text { fun } f x \Rightarrow e_{0}\right)^{\ell} \quad \text { iff } \quad\left\{\text { fun } f x \Rightarrow e_{0}\right\} \subseteq \widehat{C}(\ell) \\
& (\widehat{\mathrm{C}}, \widehat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta})={ }_{D}\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \\
& (\widehat{\mathrm{C}}, \widehat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta})={ }_{D} t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta})={ }_{D} t_{2}^{\ell_{2}} \wedge \\
& \left(\forall\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{\mathrm{C}}\left(\ell_{1}\right):(\widehat{\mathrm{C}}, \widehat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta})=_{D} t_{0}^{\ell_{0}} \wedge\right. \\
& \widehat{C}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \hat{\mathrm{D}}\left(\ell_{2}\right) \sqsubseteq \widehat{\delta}(x) \wedge \\
& \left.\widehat{C}\left(\ell_{0}\right) \subseteq \widehat{C}(\ell) \wedge \hat{D}\left(\ell_{0}\right) \sqsubseteq \hat{D}(\ell)\right) \wedge \\
& \left(\forall\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{C}\left(\ell_{1}\right):(\widehat{C}, \widehat{D}, \widehat{\rho}, \widehat{\delta})={ }_{D} t_{0}^{\ell_{0}} \wedge\right. \\
& \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \hat{\mathrm{D}}\left(\ell_{2}\right) \sqsubseteq \widehat{\delta}(x) \wedge \\
& \widehat{C}\left(\ell_{0}\right) \subseteq \widehat{C}(\ell) \wedge \hat{D}\left(\ell_{0}\right) \sqsubseteq \hat{D}(\ell) \wedge \\
& \left.\left\{\text { fun } f x=>t_{0}^{\ell_{0}}\right\} \subseteq \widehat{\rho}(f)\right)
\end{aligned}
$$

Abstract Values as Complete Lattices (2)

$$
\begin{aligned}
& (\hat{c}, \hat{\mathrm{D}}, \hat{\rho}, \hat{\delta}) \models_{D} c^{\ell} \quad \text { iff } \quad \iota_{C} \sqsubseteq \hat{\mathrm{D}}(\ell) \\
& (\hat{c}, \hat{\mathrm{D}}, \hat{\rho}, \widehat{\delta}) \models_{D} x^{\ell} \quad \text { iff } \quad \hat{\rho}(x) \subseteq \widehat{\mathrm{C}}(\ell) \wedge \hat{\delta}(x) \sqsubseteq \hat{\mathrm{D}}(\ell) \\
& \left.(\hat{C}, \widehat{\mathrm{D}}, \hat{\rho}, \hat{\delta}) \models_{D} \text { (if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{t_{2}}\right)^{l} \\
& \text { iff } \\
& (\hat{c}, \widehat{\mathrm{D}}, \hat{\rho}, \delta) \models{ }_{D} t_{0}^{\ell_{0}} \wedge \\
& \left(\iota_{\text {true }} \sqsubseteq \hat{D}\left(\ell_{0}\right) \Rightarrow(\hat{C}, \widehat{\mathrm{D}}, \hat{\rho}, \hat{\delta}) \models_{D} t_{1}^{\ell_{1}} \wedge\right. \\
& \left.\hat{C}\left(\ell_{1}\right) \subseteq \hat{C}(\ell) \wedge \hat{D}\left(\ell_{1}\right) \sqsubseteq \hat{D}(\ell)\right) \wedge \\
& \left(\iota_{\text {false }} \sqsubseteq \hat{\mathrm{D}}\left(\ell_{0}\right) \Rightarrow(\hat{\mathrm{C}}, \hat{\mathrm{D}}, \hat{\rho}, \hat{\delta}) \models_{D} t_{2}^{\ell_{2}} \wedge\right. \\
& \left.\hat{C}\left(\ell_{2}\right) \subseteq \hat{C}(\ell) \wedge \hat{D}\left(\ell_{2}\right) \sqsubseteq \hat{D}(\ell)\right)
\end{aligned}
$$

Abstract Values as Complete Lattices (3)

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \widehat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta})={ }_{D}\left(\operatorname{let} x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \\
& (\widehat{C}, \widehat{\mathrm{D}}, \hat{\rho}, \widehat{\delta}) \neq_{D} t_{1}^{\ell_{1}} \wedge \\
& (\hat{C}, \hat{D}, \widehat{\rho}, \widehat{\delta})=_{D} t_{2}^{\ell_{2}} \wedge \\
& \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \widehat{\rho}(x) \wedge \hat{\mathrm{D}}\left(\ell_{1}\right) \sqsubseteq \widehat{\delta}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\mathrm{C}}(\ell) \wedge \hat{\mathrm{D}}\left(\ell_{2}\right) \sqsubseteq \widehat{\mathrm{D}}(\ell) \\
& (\widehat{C}, \hat{\mathrm{D}}, \hat{\rho}, \widehat{\delta}) \models_{D}\left(t_{1}^{\ell_{1}} \text { op } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \\
& (\widehat{C}, \widehat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta})=_{D} t_{1}^{\ell_{1}} \wedge(\hat{\mathrm{C}}, \hat{\mathrm{D}}, \hat{\rho}, \widehat{\delta}) \models_{D} t_{2}^{\ell_{2}} \wedge \\
& f_{o p}\left(\hat{\mathrm{D}}\left(\ell_{1}\right), \widehat{\mathrm{D}}\left(\ell_{2}\right)\right) \sqsubseteq \hat{\mathrm{D}}(\ell)
\end{aligned}
$$

Example:

	($\widehat{C}, \widehat{\rho}$)	($\widehat{C}, \widehat{\rho}$)	($\widehat{C}, \widehat{\rho}$)	($\widehat{\mathrm{D}}, \widehat{\delta}$)
1	\emptyset	\{+\}	\emptyset	\{+\}
2	\emptyset	\{0\}	\emptyset	\{0\}
3	\emptyset	$\{\mathrm{tt}$ \}	\emptyset	\{tt $\}$
4	\emptyset	\{0\}	\emptyset	\{0\}
5	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right\}$	\emptyset
6	\emptyset	\emptyset	\emptyset	\emptyset
7	$\left\{\mathrm{fn} \mathrm{z}=>25^{6}\right\}$	\emptyset	\emptyset	\emptyset
8		\{fn $\left.\mathrm{y}=>\mathrm{y}^{4}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right\}$	\emptyset
9	$\left\{\mathrm{fn} \mathrm{x} \mathrm{c}^{\text {a }}(\cdots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	\emptyset
10	$\left\{\mathrm{fn} \mathrm{x}=>(\ldots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	\emptyset
11	\emptyset	\{+\}	\emptyset	\{+\}
12	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}, \mathrm{fn} \mathrm{z}=>25^{6}\right\}$	$\left\{\mathrm{fn} \mathrm{y}=>\mathrm{y}^{4}\right\}$	$\left\{\mathrm{fn} \mathrm{y} \mathrm{y}^{\text {P }} \mathrm{y}^{4}\right\}$	\emptyset
13	\emptyset	\{0\}	\emptyset	\{0\}
14	\emptyset	\{0\}	\emptyset	\{0\}
15	\emptyset	\{0\}	\emptyset	\{0\}
f	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	$\left\{\mathrm{fn} \mathrm{x}=>(\cdots)^{8}\right\}$	\emptyset
x	\emptyset	$\{+\}$	\emptyset	\{+\}
y	\emptyset	\{0\}	\emptyset	\{0\}
z	\emptyset	\emptyset	\emptyset	\emptyset

Staging the specification

Alternative clause for the conditional where the data flow component cannot influence the control flow component:

$$
\begin{aligned}
(\hat{\mathrm{C}}, \hat{\mathrm{D}}, \hat{\rho}, \widehat{\delta}) \models_{D} & \left(\text { if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \\
\text { iff } \quad & (\hat{\mathrm{C}}, \widehat{\mathrm{D}}, \hat{\rho}, \widehat{\delta}) \models_{D} t_{0}^{\ell_{0}} \wedge \\
& (\widehat{\mathrm{C}}, \widehat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta}) \models_{D} t_{1}^{\ell_{1}} \wedge \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \widehat{\mathrm{C}}(\ell) \wedge \hat{\mathrm{D}}\left(\ell_{1}\right) \sqsubseteq \hat{\mathrm{D}}(\ell) \wedge \\
& (\widehat{\mathrm{C}}, \widehat{\mathrm{D}}, \widehat{\rho}, \widehat{\delta}) \models_{D} t_{2}^{\ell_{2}} \wedge \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\mathrm{C}}(\ell) \wedge \hat{\mathrm{D}}\left(\ell_{2}\right) \sqsubseteq \hat{\mathrm{D}}(\ell)
\end{aligned}
$$

Compare with flow-insensitive Data Flow Analyses.

Adding Context Information

Mono-variant analysis: does not distinguish the various instances of variables and program points from one another. (Compare with contextinsensitive interprocedural analysis.) 0-CFA is a typical example.

Poly-variant analysis: distinguishes between the various instances of variables and program points. (Compare with context-sensitive interprocedural analysis.)

Example:

$$
\left(\text { let } f=\left(f n x \Rightarrow x^{1}\right)^{2} \text { in }\left(\left(f^{3} f^{4}\right)^{5}\left(f n y \Rightarrow y^{6}\right)^{7}\right)^{8}\right)^{9}
$$

The least 0-CFA analysis:

$$
\begin{aligned}
& \widehat{C}_{i d}(1)=\left\{f n x \Rightarrow x^{1}, f n y \Rightarrow y^{6}\right\} \quad \widehat{C}_{i d}(2)=\left\{f n x=x^{1}\right\} \\
& \hat{\mathrm{C}}_{\mathrm{id}}(3)=\left\{\mathrm{fn} \mathrm{x}=>\mathrm{x}^{1}\right\} \quad \hat{\mathrm{C}}_{\mathrm{id}}(4)=\left\{\mathrm{fn} \mathrm{x}=\mathrm{x}^{1}\right\} \\
& \widehat{C}_{i d}(5)=\left\{f n x \Rightarrow x^{1}, f n y \Rightarrow y^{6}\right\} \hat{\mathrm{C}}_{\mathrm{id}}(6)=\left\{\mathrm{fn} y \Rightarrow y^{6}\right\} \\
& \hat{\mathrm{C}}_{i d}(7)=\left\{\mathrm{fn} y \Rightarrow \mathrm{y}^{6}\right\} \quad \hat{\mathrm{C}}_{i d}(8)=\left\{\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1} \text {, fn } \mathrm{y} \Rightarrow \mathrm{y}^{6}\right\} \\
& \hat{C}_{i d}(9)=\left\{f n x \Rightarrow x^{1}, f n y \Rightarrow y^{6}\right\} \\
& \hat{\rho}_{\text {id }}(f)=\left\{f n x \Rightarrow x^{1}\right\} \quad \hat{\rho}_{\text {id }}(x)=\left\{f n x=x^{1}, f n y=y^{6}\right\} \\
& \widehat{\rho}_{\text {id }}(\mathrm{y})=\left\{\mathrm{fn} \mathrm{y}=\mathrm{y}^{6}\right\}
\end{aligned}
$$

The analysis says that the expression may evaluate to fn $x=>x^{1}$ or $f n y=y^{6}$.

However, only fn $y=>y^{6}$ is a possible result.

A purely syntactic solution:

Expand

$$
(\text { let } f=(f n x=>x) \text { in }((f f)(f n y=>y))
$$

into

```
let \(f 1=(f n x 1=>x 1)\)
```


and analyse the expanded expression.

The 0-CFA analysis is now able to deduce that the overall expression will evaluate to fn y => y only.

A purely semantic solution: Uniform k-CFA

Idea: extend the set $\widehat{\text { Val }}$ to include context information

In a (uniform) k-CFA a context δ records the last k dynamic call points; hence contexts will be sequences of labels of length at most k and they will be updated whenever a function application is analysed. (Compare call strings of length at most k.)

Abstract Domains

$$
\begin{array}{rll}
\delta \in \widehat{\Delta}=\mathbf{L a b} \leq k & \text { context information } \\
c e \in \widehat{\mathbf{C E n v}}=\mathbf{V a r} \rightarrow \Delta & \text { context environments } \\
\widehat{v} \in \widehat{\mathbf{V a l}} & =\mathcal{P}(\mathbf{T e r m} \times \mathbf{C E n v}) & \text { abstract values } \\
\widehat{\rho} \in \widehat{\mathbf{E n v}} & =(\operatorname{Var} \times \Delta) \rightarrow \widehat{\mathbf{V a l}} & \text { abstract environments } \\
\widehat{\mathrm{C}} \in \widehat{\mathbf{C a c h e}} & =(\mathbf{L a b} \times \triangle) \rightarrow \widehat{\mathbf{V a l}} & \text { abstract caches } \\
\text { (Uniform because } \Delta \text { used both for } \widehat{\text { Env }} \text { and Cache.) }
\end{array}
$$

Acceptability Relation

$$
(\hat{c}, \hat{\rho}) \models_{\delta}^{c e} e
$$

where

- $c e$ is the current context environment - will be changed when new bindings are made
- δ is the current context - will be changed when functions are called

Idea: The formula expresses that $(\hat{C}, \widehat{\rho})$ is an acceptable analysis of e in the context specified by $c e$ and δ.

Control Flow Analysis with Context (1)

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \widehat{\rho})=_{\delta}^{c e}\left(\mathrm{fn} x=>e_{0}\right)^{\ell} \quad \underline{\mathrm{iff}} \quad\left\{\left(\mathrm{fn} x \Rightarrow e_{0}, c e\right)\right\} \subseteq \widehat{\mathrm{C}}(\ell, \delta) \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \neq_{\delta}^{c e}\left(\text { fun } f x=>e_{0}\right)^{\ell} \quad \underline{\text { iff }} \quad\left\{\left(\text { fun } f x \Rightarrow e_{0}, c e\right)\right\} \subseteq \widehat{C}(\ell, \delta) \\
& (\widehat{\mathrm{C}}, \widehat{\rho})={ }_{\delta}^{c e}\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff }(\widehat{\mathrm{C}}, \widehat{\rho})=_{\delta}^{c e} t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \models_{\delta}^{c e} t_{2}^{\ell_{2}} \wedge \\
& \left(\forall\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}, c e_{0}\right) \in \widehat{C}\left(\ell_{1}, \delta\right):\right. \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \neq{ }_{\delta_{0}}^{c e_{0}^{\prime}} t_{0}^{\ell_{0}} \wedge \widehat{\mathrm{C}}\left(\ell_{2}, \delta\right) \subseteq \widehat{\rho}\left(x, \delta_{0}\right) \wedge \widehat{\mathrm{C}}\left(\ell_{0}, \delta_{0}\right) \subseteq \widehat{\mathrm{C}}(\ell, \delta) \\
& \text { where } \left.\delta_{0}=\lceil\delta, \ell]_{k} \text { and } c e_{0}^{\prime}=c e_{0}\left[x \mapsto \delta_{0}\right]\right) \wedge \\
& \left(\forall\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}, c e_{0}\right) \in \widehat{C}\left(\ell_{1}, \delta\right):\right. \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \vDash{ }_{\delta_{0}}^{c e_{0}^{\prime}} t_{0}^{\ell_{0}} \wedge \widehat{\mathrm{C}}\left(\ell_{2}, \delta\right) \subseteq \widehat{\rho}\left(x, \delta_{0}\right) \wedge \widehat{\mathrm{C}}\left(\ell_{0}, \delta_{0}\right) \subseteq \widehat{\mathrm{C}}(\ell, \delta) \wedge \\
& \left\{\left(\text { fun } f x=>t_{0}^{\ell_{0}}, c e_{0}\right)\right\} \subseteq \widehat{\rho}\left(f, \delta_{0}\right) \\
& \text { where } \left.\delta_{0}=\lceil\delta, \ell\rceil_{k} \text { and } c e_{0}^{\prime}=c e_{0}\left[f \mapsto \delta_{0}, x \mapsto \delta_{0}\right]\right)
\end{aligned}
$$

Control Flow Analysis with Context (2)

$$
\begin{aligned}
& (\hat{C}, \hat{\rho}) \models \models_{\delta}^{c e} c^{\ell} \text { always } \\
& (\hat{C}, \hat{\rho}) \models_{\delta}^{c e} x^{\ell} \quad \text { iff } \quad \hat{\rho}(x, c e(x)) \subseteq \hat{C}(\ell, \delta) \\
& (\hat{C}, \hat{\rho}) \models_{\delta}^{c e}\left(\text { if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\hat{\mathrm{C}}, \hat{\rho})={ }_{\delta}^{c e} t_{0}^{t_{0}} \wedge(\hat{\mathrm{C}}, \hat{\rho}) \models_{\delta}^{c e} \ell_{1}^{\ell_{1}} \wedge(\hat{\mathrm{C}}, \hat{\rho})={ }_{\delta}^{c e} t_{2}^{\ell_{2}} \wedge \\
& \widehat{\mathrm{C}}\left(\ell_{1}, \delta\right) \subseteq \widehat{\mathrm{C}}(\ell, \delta) \wedge \widehat{\mathrm{C}}\left(\ell_{2}, \delta\right) \subseteq \widehat{\mathrm{C}}(\ell, \delta) \\
& (\hat{c}, \hat{\rho}) \models_{\delta}^{c e}\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{l} \\
& \text { iff }(\hat{C}, \hat{\rho}) \models_{\delta}^{c c} t_{1}^{\ell_{1}} \wedge(\hat{C}, \hat{\rho}) \models_{\delta}^{c c^{\prime}} t_{2}^{\ell_{2}} \wedge \\
& \hat{C}\left(\ell_{1}, \delta\right) \subseteq \hat{\rho}(x, \delta) \wedge \hat{C}\left(\ell_{2}, \delta\right) \subseteq \hat{c}(\ell, \delta) \\
& \text { where } c e^{\prime}=c e[x \mapsto \delta] \\
& (\hat{C}, \hat{\rho}) \models_{\delta}^{c e}\left(t_{1}^{\ell_{1}} \text { op } t_{2}^{\ell_{2}}\right)^{\ell} \quad \text { iff } \quad(\hat{c}, \hat{\rho}) \models_{\delta}^{c e} t_{1}^{\ell_{1}} \wedge(\hat{C}, \hat{\rho}) \models_{\delta}^{c e} t_{2}^{\ell_{2}}
\end{aligned}
$$

Example:

$$
\left(\text { let } f=\left(f n x \Rightarrow x^{1}\right)^{2} \text { in }\left(\left(f^{3} f^{4}\right)^{5}\left(f n y \Rightarrow y^{6}\right)^{7}\right)^{8}\right)^{9}
$$

Contexts of interest for uniform 1-CFA:
\wedge : the initial context
5: the context when the application point labelled 5 has been passed
8: the context when the application point labelled 8 has been passed
Context environments of interest for uniform 1-CFA:
$\mathrm{ce}_{0}=[] \quad$ the initial (empty) context environment
$\mathrm{ce}_{1}=\mathrm{ce} \mathrm{e}_{0}[\mathrm{f} \mapsto \Lambda]$ the context environment for the analysis of the body of the let-construct
$\mathrm{ce}_{2}=\mathrm{ce} \mathrm{e}_{0}[\mathrm{x} \mapsto 5] \quad$ the context environment used for the analysis of the body of f initiated at the application point 5
$\mathrm{ce}_{3}=\mathrm{ce} \mathrm{e}_{0}[\mathrm{x} \mapsto 8] \quad$ the context environment used for the analysis of the body of f initiated at the application point 8.

Example: Let us take $\widehat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}$ and $\hat{\rho}_{\mathrm{id}}{ }^{\prime}$ to be:

$$
\begin{aligned}
& \widehat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(1,5)=\left\{\left(\mathrm{fnx} \Rightarrow \mathrm{x}^{1}, \mathrm{ce}_{0}\right)\right\} \quad \hat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(1,8)=\left\{\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{6}, \mathrm{ce}_{0}\right)\right\} \\
& \widehat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(2, \wedge)=\left\{\left(\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1}, \mathrm{ce}_{0}\right)\right\} \quad \hat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(3, \Lambda)=\left\{\left(\mathrm{fn} \mathrm{x}=\mathrm{x}^{1}, \mathrm{ce}_{0}\right)\right\} \\
& \hat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(4, \Lambda)=\left\{\left(\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1}, \mathrm{ce}_{0}\right)\right\} \quad \widehat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(5, \Lambda)=\left\{\left(\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1}, \mathrm{ce}_{0}\right)\right\} \\
& \widehat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(7, \Lambda)=\left\{\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{6}, \mathrm{ce}_{0}\right)\right\} \quad \widehat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(8, \wedge)=\left\{\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{6}, \mathrm{ce}_{0}\right)\right\} \\
& \widehat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}(9, \wedge)=\left\{\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{6}, \mathrm{ce}_{0}\right)\right\} \\
& \hat{\rho}_{\mathrm{id}}{ }^{\prime}(\mathrm{f}, \wedge)=\left\{\left(\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1}, \mathrm{ce}_{0}\right)\right\} \\
& \hat{\rho}_{\mathrm{id}}{ }^{\prime}(\mathrm{x}, 5)=\left\{\left(\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1}, \mathrm{ce}_{0}\right)\right\} \quad \hat{\rho}_{\mathrm{id}}{ }^{\prime}(\mathrm{x}, 8)=\left\{\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{6}, \mathrm{ce}_{0}\right)\right\}
\end{aligned}
$$

This is an acceptable analysis result:

$$
\left(\widehat{\mathrm{C}}_{\mathrm{id}}{ }^{\prime}, \widehat{\rho}_{\mathrm{id}}^{\prime}\right) \vDash{ }_{\wedge}^{\mathrm{ce}}\left(\text { let } \mathrm{f}=\left(\mathrm{fn} \mathrm{x} \Rightarrow \mathrm{x}^{1}\right)^{2} \text { in }\left(\left(\mathrm{f}^{3} \mathrm{f}^{4}\right)^{5}\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{6}\right)^{7}\right)^{8}\right)^{9}
$$

Complexity

Uniform k-CFA has exponential worst case complexity even when $k=1$

Assume that the expression has size n and that it has p different variables. Then Δ has $O(n)$ elements and hence there will be $O(p \cdot n)$ different pairs (x, δ) and $O\left(n^{2}\right)$ different pairs (ℓ, δ). This means that ($\widehat{\mathrm{C}}, \widehat{\rho}$) can be seen as an $O\left(n^{2}\right)$ tuple of values from Val. Since $\widehat{\text { Val }}$ itself is a powerset of pairs of the form $(t, c e)$ and there are $O\left(n \cdot n^{p}\right)$ such pairs it follows that Val has height $O\left(n \cdot n^{p}\right)$. Since $O(p)=O(n)$ we have the exponential worst case complexity.

0-CFA analysis has polynomial worst case complexity

It corresponds to letting Δ be a singleton. Repeating the above calculations we can see $(\widehat{\mathrm{C}}, \widehat{\rho})$ as an $O(p+n)$ tuple of values from $\widehat{\mathrm{Val}}$, and $\widehat{\text { Val }}$ will be a lattice of height $O(n)$.

Variations (based on call-strings)

Uniform k-CFA

$$
\begin{array}{rll}
c e \in \widehat{\text { CEnv }} & =\operatorname{Var} \rightarrow \Delta & \text { context environments } \\
\widehat{v} \in \widehat{\mathrm{Val}} & =\mathcal{P}(\operatorname{Term} \times \mathbf{C E n v}) & \text { abstract values } \\
\widehat{\rho} \in \widehat{\text { Env }} & =(\operatorname{Var} \times \Delta) \rightarrow \widehat{\text { Val }} & \text { abstract environments } \\
\widehat{C} \in \widehat{\text { Cache }} & =(\mathbf{L a b} \times \Delta) \rightarrow \widehat{\mathrm{Val}} & \text { abstract caches }
\end{array}
$$

k-CFA

$$
\widehat{\mathrm{C}} \in \widehat{\text { Cache }}=(\mathrm{Lab} \times \mathrm{CEnv}) \rightarrow \widehat{\mathrm{Val}} \text { abstract caches }
$$

Polynomial k-CFA
$\widehat{v} \in \widehat{\mathrm{Val}}=\mathcal{P}(\operatorname{Term} \times \Delta)$ abstract values

