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Abstract:  This paper presents a technique for designing theorem prover which mainly based on transformation 
and substitution for Pointer Logic. The technique realized as a tool called APL is implemented. The APL theorem 
prover is fully automated with which proofs can be recorded and checked efficiently. The tool is tested on pointer 
programs mainly about singly-linked lists, doubly-linked lists and binary trees. 
Key words:  pointer program; pointer logic; verification condition; automated theorem prover; proof checker 

摘  要: 提出了一种为指针逻辑设计定理证明器的新技术,该项技术主要是基于变换和替代,已在 APL 的工具中

得以实现.APL 自动定理证明器是完全自动的,且其产生的证明可以被有效地记录和检验.已使用关于单链表、双链

表和二叉树的指针程序测试了该自动定理证明器. 
关键词: 指针程序;指针逻辑;验证条件;自动定理证明器;证明检查器 
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1   Introduction 

With increased complexity of missions, the need for high quality and safety-critical software has increased 
dramatically over the past few years. Formal methods have been used in the development of many safety-critical 
systems in the form of formal specification and formal proof of correctness. A wide variety of different logics have 
been developed for formal methods. Building theorem provers for each of these logics is a massive challenge. 

Among all the existing popular theorem provers, PVS[1] is a proprietary system for developing formal 
specifications, of which the PVS proof checker is one component. Isabelle[2,3] is a generic theorem prover, allowing 
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different logics to be defined by users. Nuprl[4] is an interactive proof system for constructive mathematics based on 
Martin-Löf's Type Theory. Coq[5] is a proof assistant for the Calculus of Inductive Constructions and Coq uses the 
natural deduction proof style. ACL2[6] is a heavily automated, first order theorem prover specifically designed to 
support the specification and development of computing systems. As is well known, this area is characterized by its 
wide variety of proof methods, forms of automated deduction and applications. 

This paper concerns with automated theorem proving for Pointer Logic[7], which is an extension of Hoare logic 
and essentially is a pointer analysis tool. Pointer Logic is designed for PointerC[8] which is a C-like programming 
language. In Pointer Logic, pointers are classified into effective pointers (those point to objects) and ineffective 
pointers which contain null pointers and dangling pointers. Pointer Logic collects pointer information including 
whether a pointer is null, dangling or effective, the equality between effective pointers in a forward manner. And the 
collected information can then be used to prove that the program satisfies the requests of user-defined safety 
policies such as type safety and memory safety. To meet the safety requirements of software, some undecidable 
pointer operations have been restrained in PointerC. Thus we can obtain accurate pointer analysis instead of an 
imprecise one. 

In our earlier work, we designed a certifying compiler called PLCC[9] for PointerC. In our original 
implementation, not all the verification conditions (VCs) generated by the verification condition generator (VCG) 
could be proved automatically by the theorem prover embedded in the compiler and those VCs need to be proved 
interactively by programmers using the proof-assistant tool—Coq. Consequently it made the tool difficult to use by 
one who is not an expert in Coq. Besides, the early version of PLCC can handle only a few simple programs written 
in PointerC. This is because the programming language constructs such as pointers, structures and unions are not 
directly supported by the existing provers, and are often encoded imprecisely by using axioms and uninterrupted 
functions[10]. To solve those problems, we have developed a new powerful automated theorem prover called APL for 
the PLCC system. 

Our paper makes the following contributions: 
1. We present a new technique for designing automated theorem prover which mainly proves proof 

obligations manipulating pointers; 
2. A fully automated theorem prover using this technique has been implemented for Pointer Logic; 
3. Machine checkable proofs could be generated, recorded and checked efficiently by this tool; 
4. The realization of the automated theorem prover APL makes our earlier certifying compiler PLCC more 

powerful now. 
In this paper, we introduce Pointer Logic, and the design and implementation of our automated theorem prover. 

The rest of the paper is organized as follows. Section 2 describes Pointer Logic. In Section 3 we give an overview of 
the whole theorem prover and introduce the verification condition. We describe the verification condition checker, 
which checks if the verification condition to be proved violates the rules of Pointer Logic in Section 4. In Section 5, 
we explain how the proofs are generated and recorded. Proof checking is described in Section 6. Section 7 shows 
the experimental results. Section 8 compares our work with related work and Section 9 concludes the paper. 

2   Pointer Logic 

Pointer Logic is an extension of Hoare logic and it essentially is a pointer analysis tool. The basic idea of 
Pointer Logic is to represent memory states by means of sets of pointers. Pointer Logic consists of an assertion 
language, a set of axioms and inference rules. The interested reader can find a detailed description of Pointer Logic 
in Refs.[7,9]. 
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Our certifying compiler PLCC supports a source language called PointerC which equipped with both a type 
system and a logic system. PointerC is a C-like imperative language, which excludes pointer arithmetic and the 
address-of operation. These restrictions are based on the premise of not affecting the functionality of PointerC and 
this makes checking more pointer programs statically possible. We use the logic system to help reason the side 
conditions in the typing rules and then support value-sensitive static checking. In the following, we will give a brief 
introduction to this logic system called Pointer Logic. Due to the limitation of space, we will not describe the 
axioms and inference rules of Pointer Logic in the following subsections. 

2.1   Conventions and notations 

In Pointer Logic, we represent states by means of sets of pointers (or access paths, which are introduced later) 
and we classify pointers into three kinds: effective pointers (those point to dynamically allocated objects), null 
pointers and dangling pointers. At any program point, we use Π to denote set of effective pointers; use N to denote 
the set of null pointers; use D to denote the set of dangling pointers. The null pointers and dangling pointers are also 
called ineffective pointers. N and D are used for the purpose of detecting possible memory errors such as null 
dereference or using an ineffective pointer as actual parameter of function free. The elements of set N and set D are 
pointers while the elements of Π are sets of pointers when N, D, Π are not empty. We use Sn to denote the elements 
of Π, the suffix n represents the dimension of Π. Note that the order of Sn in Π does not matter. For example, if 
Π={{p,q},{m,n}}, we let S1={p,q}, S2={m,n}, we call p, q, m, n all effective pointers, and p, q are equal pointers 
(but not aliases), m, n are equal pointers (but not aliases). According to Point Logic, p and q in S1 should not be 
equal to any other pointers in S2 and vice versa. Next, we introduce the concepts of equality and aliasing of pointers. 
We say that two pointers are equal if their r-values are equal. We say that two pointers are aliases if their l-values 
are equal. 

In our Logic, a heap is represented by a directed graph. Each dynamically allocated object is a vertex in a 
graph. The access paths maintain the topological structure by connecting vertices in the graph. Access paths are a 
special kind of strings that satisfies certain syntactical requirements. Thus we introduce the notation of prefix. For 
example, p→next is a prefix of p→next→next, and p is a prefix of p→next→next. Pointer Logic concerns pointer 
aliasing which occurs when two or more access paths refer the same storage location at the same program point. 
Different access paths are assumed to bound to different storage locations, unless it can be proved that they are 
bound to the same location (those bound to the same location are aliases) therefore, equality information of effective 
pointers is needed to deduce the access paths that are bound to the same location. 

2.2   Assertion language 

In the following figure we show the syntax of the assertion language, which is used to annotate the source 
program in PointerC. We omitted the definition of boolexp. Actually, it is a Boolean expression, and it can be value 
TRUE, FALSE, or conjunction, disjunction, negation, and so on. Here ε means null. The definition of Π, N and D is 
just the same form as we described above. And lval can be considered as the pointer or the access path we 
mentioned in Section 2.1. Let us take p(→next)3 as an example to explain the meaning of lval(→id)exp. p(→next)3 is 
the abbreviation for p→next→next→next. And id is a string over the alphabet [0..9a..zA..Z]. If the effective pointer 
set or the null pointer set or the dangling pointer set is empty, then {…}Π or {…}N or {…}D will not appear in the 
assertion. 
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Pointer Logic is designed to be fit to collect pointer information in a forward manner. This information 
includes whether a pointer is null, dangling or effective, equality relation between effective pointers. The 
information collected is recorded in sets. From all of the above, one may find that Pointer Logic is a little different 
from all the other existing logics devised to prove pointer programs, although itself is an extension of Hoare logic. 
Considering the fact that it is not quantifier free, the pointer information is stored in set and it needs to take many 
pointer aliasing problems into account, it is a challenging problem to design an automated theorem prover for 
Pointer Logic. 

3   Overview of the APL Theorem Prover 

The basic interface that an ATP provides takes as input a formula and returns a Boolean (“true”, “false”) 
answer. In addition to this basic interface, ATP may generate proofs witnessing the validity of input formulas, this 
basic capability is essential to techniques such as Proof-Carrying Code (PCC)[11], where the ATP is an untrusted and 
potentially complicated program and the proof generated by the ATP can be checked efficiently by a simple 
program. And our implementation is not an exception. 

Figure 1 gives an overview of the overall system architecture. 
 
 
 
 
 
 
 

 

Verification condition (VC)

Invalid VC

Fig.1  Overall structure of the APL theorem prover 

The system takes as input the verification condition generated by a verification condition generator embedded 
in the front end of the PLCC compiler. The VC is first propagated to the VC checker, which checks if the VC 
satisfies the rules of Pointer Logic, if not, the invalid VC will not be handled further more by the APL system. The 
valid one is put to the decision procedures which will generate its corresponding proofs if existed. Then the VC and 

Valid VC

VC checker 

VC+Proof Proof checkerDecision procedures 
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=

}

its proofs are propagated to the proof checker, which will check if the proofs are right or not. The correctness of our 
system doesn’t depend on the correctness of the theorem prover. Instead, we only need trust the proof checker. The 
individual components of APL will be described in some details in the subsequent sections. 

3.1   Verification condition 

In this section we describe the verification condition and introduce an example. First, the form of VC will be 
demonstrated, and then we present a VC example to help the reader to understand what the goals to be proved look 
like. The VC has the form as follows: 
 prop→prop (e 2.1.0) 

Each prop above is composed of eight parts, they are: Quant, Π, N, D, Pred, Darr, Notsure, Env. The contents 
of each part are: Quant contains the quantifiers, Π contains the effective pointers, N contains the null pointers, D 
contains the dangling pointers, Pred contains the recursively defined predicates that appear in the annotations, Darr 
contains the dynamic array information, Notsure contains the pointers that are represented in the form of forall k: 
i..j(P), where P could be predicates or pointers, which have k at the exponential position. For example, Notsure may 
look like the form in (e 2.1.1) or (e 2.1.2). And the last part of prop is Env, which contains the integer linear 
arithmetic equalities and inequalities. For instance, the Env part may have the form shown in (e 2.1.3). 

  (e 2.1.1) forall [0... ].( ( ( ) ))ii n Tree p lchild rchild lchild→ → →

  (e 2.1.2) 1forall [1... ].( {{ ( ) , ( ) }})k k
ik n P p rchild p r lchild+→ → →

  (e 2.1.3) 1 & &  & & 0i i n j≥ < =

As the above, the goal we are going to prove will be the form of the following: 

 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

{ , , , , , , , }
{ , , , , , , ,

Goal Quant N D Pred Darr Notsure Env
Quant N D Pred Darr Notsure Env

Π
Π

 →
            

 (e 2.1.4) 

And 
:  Quant exists n int  

11 12 1 1 2[] or [[ , ,..., ],...,[ , ,..., ]]i m m mp p p p p pΠ     j

p

j

 

11 12 1[] or [ , ,..., ]iN p p p      

11 12 1[] or [ , ,..., ]iD p p      

1 11 12 1 1 2[] or [( ,[ , ,..., ]),...,( ,[ , ,..., ])]i n m m mPred id p p p id p p p      

11 12 1 1 2[] or [( , ,exp ),...,( , ,exp )]m m mDarr p p p p       

1 11 12 13 1 2 3[] or [( ,exp ,exp ,exp ),...,( ,exp ,exp ,exp )]m m m mNotsure p p       

   Env integer linear arithmetic expression  
In order to give the reader an overall impression of what the VCs look like, a practical example of VC that 

appears in the program list_rotate.c which is about the rotation operation on lists is given in Fig.2. 
As shown in the Fig.2, the first annotation between /*and*/ defines an auxiliary predicate describing a 

singly-linked list. The second annotation between /*@ and*/ is the pre-condition of the whole function, and the last 
annotation between /*@ and*/ is the post-condition of the whole function. For lack of space we omit the assertions 
inserted between the source codes. In this paper, we only consider the proof goals constructed from the verification 
condition between the /*THE VERIFICATION CONDITION IS: and*/, and do not care about how the verification 
condition are generated by the verification condition generator (VCG). There are 12 proof goals for the verification 
condition in the above example. Fig.3 shows some of these proof goals. 

We can find some facts about the proof obligations in Fig.3 to be proved: first, the goal that is going to be 
proved is not quantifier-free as shown in (p 2.2.1) and lots of former experiences indicate that this kind of proof 
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obligations is not easy to be proved automatically; second, not all the eight parts mentioned above will be used in 
the VC as shown in (p 2.2.2) and (p 2.2.3). Obviously, which part will be used depends on the program going to be 
proved; third, the existence of exponent that indicates how many the next exist as shown in (p 2.2.1) makes the VC 
not easy to prove. Due to all the facts mentioned above and the characteristics of Pointer Logic, the design and 
implementation of an automated theorem prover for Pointer Logic is different from that are used for the existing 
provers. 

 
Struct list 
{ 

int data; 
Struct list*next; 

}; 
/*list(Struct list*p)= 

 
 
 
 N{p} 

||  P
 
 

i{{p}} && list(p→next)*/ 
/*@exists n: int.(n≥1 && P{{x}} && forall k[1...n−1].(Pi{{x(→next)k}}) && Pi{{x(→next)n}} && N{x(→next)1+n}) 
|| 
Pi{{x,p}} && N{→next} 
||  
N{x,p}*/ 
Struct list*list_rotate(Struct list*x,Struct list*p) 
{if (x!=null) 
{p→next=x; 

x=x→next; 
p=p→next; 
p→next=null 

return x; 
/*THE VERIFICATION CONDITION IS: 

 
 
 
 
 
 P

 
 

i{{p,x→next,{x}} && N{p→next} 
|| 
exists n: int.(Pi{{p,x next)n},{x next)n−1},{x}} && N{p→next} && forall k[2...n−1].(Pi{{x next)k−1}}) && n≥1 && 2≤n) 
|| 
Pi{{x,p}} && N{x→next} 
||  
N  

 
 

{x,p} 
⇒ 
(exists n: int.(n≥1 && Pi{{x}} && forall k[1...n−1].(Pi{{x(→next)k}}) && Pi{{p,x(→next)n}} && N{x(→next)1+n}) 
|| 
Pi{{x,p}} && N{x→next} 
||  
N

 
 
 

{x,p}*/ 
} 
/*@exists n: int.(n≥1 && Pi{{x}} && forall k[1...n−1].(Pi{{x(→next)k}}) && Pi{{p,x(→next)n}} && N{x(→next)1+n}) 
|| 
Pi{{x,p}} && N{x→next} 
||  {x,p}*/ N

Fig.2  An example of VC 

{{ , },{ }} & & { } (p 2.2.1)

 :  int .( 1 & & {{ }} & & forall [1... 1].( {{ ( ) }})

& &  {{ , ( ) }} & & { (

i
k

i i
n

i

P p x next x N p next

exists n n P x k n P x next

P p x next N x

→ → →                                                               

≥ − →

→ 1) })
{{ , },{ }} & & { } (p 2.2.2)
{{ , }} & &  { }
{{ , },{ }} & & { }

n

i

i

i

next
P p x next x N p next
P x p N x next
P p x next x N p next
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→ → →                                                               
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→ → →                               (p 2.2.3)

{ , }N x p
                                

 

Fig.3  Examples of proof obligation 
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4   VC Checker 

There is a good reason for designing such a checker: The verification condition generator generates a large 
number of VCs for the program being verified, and not all of those VCs are valid according to the properties of 
Pointer Logic. So there is no need to prove the invalid ones. The role of the VC checker is to check the VCs to be 
proved if they obey the rules of Pointer Logic before they are propagated to the main theorem proving decision 
procedures. Some of the rules used by the checker are listed as follows: 

These rules are directly derived from Pointer Logic. The meaning of these rules will be explained in the rest of 
this paragraph. The p in the rules (1) to (14) represents a pointer. The suffix 1, 2 in Π, N and D indicate the 
corresponding premise or conclusion respectively. S represents a set which consists of effective pointers that are 
equal. Pointers in set S should be different from each other, and different sets in Π should not have intersection. In 
Ref.[7], the reader will find the details of Π, N, D and S. The meaning of rule (1) is that if p is in set Π1 and N1 at 
the same time, then we get false. Rule (2) says that if p is in set Π1 and D1 at the same time, then we get false. The 
meaning of rule (3) and rule (4) is similar to that of rule (1) and rule (2). The meaning of rule (14) is that if p and q 
are in the same set S, and p, q are equal to each other, then we get false. Let us take rule (3) as an example, which 
indicates that if pointer p in the set N of the premise and it also in the set D of the premise, then we get false. This is 
because according to Pointer Logic, p should not be a null pointer or a dangling pointer simultaneously. 

The advantages of designing this VC checker will be shown by our experiments which will be introduced in 
Section 6. Let us take the program list_zip.c as an example, 14 VCs that violate the rules defined in Fig.4 could be 
filtered out. The run-time cost of the VC checker itself is small, so it greatly saves the time cost of the whole 
proving process. 

1 1 1 1 1 1 2 2

1 1 2

, , , ,(1) (2) (3) (4) ...
false false false false
[ ,..., ,..., ,..., ] [ , ,..., ]   

(14)
false

i j n l i i

p p N p p D p N p D p p N

S S S S S p p p p S q S p q

Π Π Π

Π

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ 
                                  

=   =   ∈   ∈ ≡  
   

 

Fig.4  Rules used by the VC checker 

5   Proof Generation 

In this section, we present a new technique for designing theorem prover which mainly based on 
transformation and substitution for Pointer Logic. Taking the proof obligations to be proved into account, we adopt 
the method of compositional verification. The original proof goal is divided into small sub-goals, and then each of 
the new sub-goals is considered. If all of the sub-goals could be proved, then the original goal has a proof. We use 
all the proofs for the sub-goals to construct the proof of the original goal. In the rest of the section we will give 
some details about how the goal is splitted into sub-goals and how the sub-goals could be proved by using 
transformation and substitution. 

The original goal usually has the form of (e 2.1.4) as described in Section 3.1, and the sub-goals for it are 
shown in Fig.5. 

The reason for breaking the original Goal into these 7 sub-goals above is that, according to Pointer Logic, the 
information of pointers in the premise and conclusion of the proof goal should be equal if the goal could be proved. 
This is a little different from the traditional rules. In traditional rules, if the premise contains all the information of 
the conclusion, then the premise implies the conclusion. The fact we require strictly that the information in the 
premise and conclusion should be equal lies on the essence of Pointer Logic and the presentation of the program 
states (sets of pointers). This restriction is required only in proving the original goal, but not the sub-goals of it. The 
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equality of the information of pointers will be checked by the proof checker. Goal1 to Goal6 are about pointers and 
Goal7 is about integer linear arithmetic. The Quant part is treated specially by the decision procedures we have 
implemented and does not appear as a sub-goal in Fig.5. 

1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

2

{ , , , , , , , }          { , , , , , , , }
{ }

Goal Quant N D Pred Darr Notsure Env Goal Quant N D Pred Darr Notsure EnvΠ Π
Π

 →  →
                                                                                     2

3 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1

2

{ }
{ , , , , , , , }          { , , , , , , , }
{ }

N
Goal Quant N D Pred Darr Notsure Env Goal Quant N D Pred Darr Notsure Env

D
Π Π

                         

 →  →
                                                        2

5 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1

2

{ }
{ , , , , , , , }          { , , , , , , , }
{ }

Pred
Goal Quant N D Pred Darr Notsure Env Goal Quant N D Pred Darr Notsure Env

Darr
Π Π

                                                       

 →  →
                    2

7 1 1 1 1 1 1 1 1

2 2

{ }
{ , , , , , , , }
{ , }

Notsure
Goal Quant N D Pred Darr Notsure Env

Quant Env
Π

                                                                                      

 →
             

 

Fig.5  The sub-goals for the original goal 
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forall :  .. exp ( 4)
{forall :  .. exp}
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 ∈  <
   

′ = −  
 

forall :  .. exp forall :  1.. exp ( 5)
{forall :  .. exp} {forall :  .. exp, forall :  1.. exp}

k m n Notsure k n l Notsure R
Notsure Notsure k m l k m n k n l

 ∈    + ∈
   

′ = +  −    +  
 

In this paragraph, we will give an introduction to some of the rules used by the decision procedures. These 
rules are shown in the above figure. Rule R1 means that if Π2 is a subset of Π1, then the original VC can be 
transformed to VC′, and Π1−Π2 means Π1 minus Π2, as we know, Π1 and Π2 are sets. Rule R2 says that if Env1 
implies Env2 then we can get VC′ from VC. Rule R3 describes the substitution of prefix of lval. The lvalp represents 
all the lvals that have prefix p in VC1, if {p,q} is an element of Π1, then we can substitute all the appearance of p in 
lvalp with q. Rule R4 and R5 are used to help proving Goal6 as shown in Fig.5. Rule R4 says that if the upper bound 
n is small than the lower bound m for an element of Notsure, then we can delete this element from Notsure and get 
Notsure′. Rule R5 combines two elements of Notsure into one to get Notsure′, by adding the new one to set Notsure 
and deleting the original two from Notsure. There are also kinds of rules designed for predicates, such as list, dlist 
and tree. Due to spaces limitations, we will not describe all of those rules used by our decision procedures. 

Let us see an example. When proving the above goal (p 4.1.1) in Fig.6, we first break this goal into two 
sub-goals (p 4.1.2) and (p 4.1.3). Now we need to prove two sub-goals: It is easy to prove (p 4.1.2), because the Π 
part of the conclusion is a subset of the Π part of the premise. When proving (p 4.1.3), predicate 
tree(res→rchild→lchild) is handled first, we try to find out if tree(res→rchild→lchild) is in the Pred part of the 
premise, the testing result is that it is not in the Pred set of the premise, then we find pointers those are equal to 
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pointer res→rchild from the Π part of the conclusion. We find that p and res→rchild are in the same set, thus we 
substitute res→rchild with p, afterwards we check if tree(p→lchild) in the Pred part of the premise, if the answer is 
yes, then we prove the predicate tree(res→rchild→lchild). Next, we prove predicate tree(res→rchild→rchild), the 
proof process of this predicate is similar to the previous one, and we can prove it too. Lastly, we prove predicate 
tree(res→lchild), we find it in the Pred part of the premise. So we prove this predicate too. Finally, all of the 
predicates in the conclusion can be proved. So (p 4.1.3) can be proved. And the proof of each predicate consists of 
the proof of (p 4.1.3). If any of the predicates in the conclusion can not be proved, then (p 4.1.3) can not be proved 
either. 

{{ , },{ }} & & { } & & ( ) & & ( )iP res rchild p res N p lchild tree p rchild tree res lchild→ → → →

→                                                                                                                          ( 4.1.1)
{{ , },{ }} & & ( ) & & ( ) & & ( )
{{ , },{

i

i

p
P res rchild p res tree res rchild lchild tree res rchild rchild tree res lchild
P res rchild p

                                                                           
→ → → → → →

→ }} & & { } & & ( ) & & ( )res N p lchild tree p rchild tree res lchild→ → →
→                                                                                                                                             ( 4.1.2)

{{ , },{ }}
{{ , },{ }} & & { } & & ( ) & & ( )

i

i

p
P res rchild p res
P res rchild p res N p lchild tree p rchild tree res lchild

                                                        
→

→ → → →

→                                  ( 4.1.3)
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p
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Fig.6  An example for predicate 
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As another example, let us consider the proof obligations in Fig.3. For (p 2.2.1), all appearances of n in the 
conclusion part are instantiated to integer 1 according to our proof strategies. Then we only need to prove the 
resulting proof goal: (new p 2.2.1). Now we break (new p 2.2.1) into 4 sub-goals, the reader will find out that each 
of these sub-goals is easy to prove. As to (p 2.2.2), there is no proof for it, and (p 2.2.3) will be filtered out by the 
VC checker. 

5.1   Proof recording 

Necula strongly advocated that theorem provers ought to generate easily checkable proofs in his paper[12]. Just 
as he suggested, in our work some effort has been spent in trying to produce human readable results, which allows 
the user to examine the generated proofs. Furthermore, our proof file can be handled easily by machine. Our 
implementation is inspired by the work of Wong[13−15] and the work of Geoffrey Norman Watson[16]. 

The type proof defined in SML for recording proofs in Fig.7 will help the reader to catch on how the proofs are 
recorded. Usually, a proof has 11 fields. Field name records the name of the proof. Field f1, f2 record the 
information of N, D and Darr. Field f3, f4 and f5 record the predicate information of Pred. Field f6, f7 record the 
information of Π. Field f8, f9 and f10 record the information of Notsure. As to Goal7 that we mentioned in Fig.5, 
which involves the Env part, we only record the name of the proof of it. To a user, recording proof is a feature which 
can be enabled or disabled. The printing of proof details can be enabled or disabled too. When the printing of the 
proof detail is disabled, the printout only contains the name of proof for each sub-goal. The right part of Fig.7 gives 
the proof of (new p2.2.1) mentioned in Section 5. 

The process of recording proof and generating proof files can be divided into three stages: 
1. Recording proofs of the sub-goals; 
2. Generating a whole proof by combining all the above proofs in stage 1; 
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3. Outputting the proof generated in stage 2 to a text file or the terminal. 

 { :  ,
        1:   ,
        2 :   ,
        3 :  ( * (  )) ,
        4 :  ( * (  )) ,
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            6 :  
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Fig.7  Definition of type proof and proof script for (new p 2.2.1) 

6   Proof Checking 

In Ref.[15], the authors design a proof checker for three main reasons: first, the mechanically generated formal 
proofs are usually very long; second, the theorem provers are usually very complex so that it is very difficult to 
verify their correctness; third, the programs that a user develops while doing the proof are very often too 
complicated and do not have simple mapping to the sequence of inferences performed by the system. Our intention 
of designing such a checker is different. The fundamental reason is that taking the characteristics of Pointer Logic 
into account, designing a theorem prover without a proof checker will be difficult to guarantee the soundness of the 
system, because the implication between the premise and conclusion of the proof goal is based on the equality of the 
information of pointers. A proof checker will be suitable to deal with this situation. At the beginning we are clear 
about it, and this makes our implementation of theorem prover is not as complex as the other existing ones, we let 
the proof checker take the task of ensuring the soundness of the theorem prover. In our implementation, a proof goal 
may have a proof generated by the theorem prover, but the proof must be checked by the proof checker. 

To a user, the checker is an ML function which does not read a proof file directly, it takes the verification 
condition and its corresponding proof as inputs and reports back with either a success which means the proofs are 
correct or a failure which means the opposite. The checking process is done in a loop. The body of the loop is a case 
analysis on the values of a string type, actually, it is the name field mentioned above in the definition of type proof 
of Section 5.1. We evaluate the name filed of all proofs, and then attempt to match it to one of the patterns in a 
given order. When a successful match occurs, a corresponding expression performing deletion is evaluated. Let’s 
take the pattern en_eq_trans_in as an example, when this pattern matches, the information in the field of f1 will be 
deleted from the N field in the premise, the information in the field of f2 will be deleted from the N field in the 
conclusion. And this pattern says that after doing substitution to the N field of the conclusion by using equalities in 
the Env field of the conclusion, the resulting N field of the conclusion is a subset of the N field of the premise. 
There are 55 patterns for the checker now. Each pattern handles some of the fields from f1 to f10. It may happen that 
the case patterns do not cover all cases, that is, there can be values that do not match any of the patterns. In that 
case, SML reports a warning stating that the matching is incomplete at compile-time. And at runtime, if an 
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unmatched expression occurs, an exception is raised. 
For example, the checking process of the proof script for (new p 2.2.1) in Fig.7 is as follows: first, pattern 

“pai_in” is matched, and the corresponding pointer information stored in f6 is deleted from the Π fields of the 
premise and conclusion of (new p 2.2.1), then pattern “en_trans_equal” is matched, and the information stored in f1 
and f2 is deleted from the N fields of the premise and conclusion of (new p 2.2.1) respectively. Here, we need to do 
some transformations to the pointer p→next in the set N of the premise of (new p 2.2.1). Because p and x→next are 
equal according to Pointer Logic, we substitute p of pointer p→next with x→next and get x→next→ next, which is 
same to x(→next)2. For the patterns “di_null”, “pred_null” and “darr_null”, nothing is done. When 
“notsure_compare_null” is matched, the information stored in field f8 is deleted from the Notsure part of the 
conclusion of (new p 2.2.1). At last, the pattern “env_true” is matched, and the Env parts of the premise and 
conclusion of (new p 2.2.1) are empty set. Thus, after matching all patterns in the proof and deleting corresponding 
information from the premise and conclusion of the verification (new p 2.2.1), we can easily find that all parts of the 
premise and conclusion are empty. This means that the pointer information in the premise is equal to that in the 
conclusion, that is, the proof is correct. 

7   Performance 

We have implemented our prover APL in SML and embedded the APL theorem prover in the certifying 
compiler PLCC which takes the annotated program in PointerC as input. Then the VCs generated by the VCG 
component of PLCC are propagated to the APL. A proof file is generated for each source file. Table 1 lists the name 
of program for testing, the number of VC for each program, the proof file size and the run time. The first 8 
programs dealing with operations such as create, reverse, destroy, insert, delete on singly-linked list. The 9th and 
10th test cases are about insertion and deletion operations on doubly-linked list, which indicate that cyclic data 
structures could be handled by the APL prover. We also tried our prover with a number of examples about 
left-rotate, right-rotate, delete, traverse operations on trees as shown in the last four lines. Although none of these 
examples is large enough to provide hard data on how much more effective a user of our tool can be than he would 
be without it, they served to test the robustness of our implementation and allow us to present some preliminary 
figures. 

Table 1  Performance of the APL prover 
Program name Number of VC Proof size (KB) Time (ms)
list_create.c 7 2 78 
list_reverse.c 14 2 281 
list_get_element.c 7 3 109 
list_destroy.c 9 1 94 
list_concat.c 12 4 344 
list_insert.c 10 5 156 
list_delete.c 10 5 93 
list_zip.c 79 2 125 
dlist_insert.c 10 6 219 
dlist_delete.c 8 5 94 
l_rotate.c 2 1 31 
r_rotate.c 2 1 47 
tree_delete.c 24 5 203 
tree_traversal.c 4 1 47 

All timings were carried out on a HP 500 with 1.73 GHz processor running Windows XP. The results were 
promising as the figures in the table showed, the proof file size was small and the run time for each program was 
less than 1 second. We were able to prove all of the proof obligations of the programs listed in Table 1 with single 
APL invocations. Compared to an earlier manual attempt, the efficiency and power of the PLCC system have been 
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greatly improved by embedding the APL theorem prover. We hope to explore this source of examples further so as 
to be able to present more concrete results. 

Let us take the operation delete on singly-linked list (list_delete.c) as an example. PALE[17] spent 1.36 seconds 
compared to 0.093 seconds for APL, and PALE didn’t generate a proof file while APL did. The experiments show 
that our prover does work in practice for non-trivial data structures, and with time and space requirement which are 
as good as or better than those related approaches with similar goals[17,18]. 

8   Related Work 

The approach of verifying programs with pointers by using theorem provers has been described by a number of 
authors. Usually the programs are written in C or a sub-set of C programming language. For lack of space we only 
mention the most relevant ones. Caduceus[19] takes the advantage of Why[20] and various existing provers (e.g. 
PVS[1], Coq[5] and Simplify[21]) can be used to prove the verification condition. But Caduceus can only handle 
type-safe C programs and the annotated C program must be first translated to an intermediate language. In our 
implementation we do not need to do any translation, the interaction takes place at the level of source code. 
ASTRÉE[22] is a program analyzer which can analyze C programs with pointers, structures and arrays, and it 
excludes union types and dynamic memory allocation. It’s bounded to a specific prover and able to fully prove 
automatically the absence of runtime errors in real-life large programs. But producing a correctness proof for 
complex software will take a few hours and use a lot of memory. ACE[23] uses a theorem proving tool called 
Stanford Temporal Prover (STeP)[24] and adopts the static assertion checking technique to verify MISRA-C program. 
ACE uses the technique of compositional verification, which helps in proving higher level properties by splitting 
the task of verification into small, manageable program slices. We employ this technique in our implementation too. 
When we are proving the initial goal, the goal will be broken into some small sub-goals first, then we prove each of 
the sub-goals, if all of the sub-goals have a proof, then we could get a proof for the initial goal. The size and 
complexity of the sub-goals is small, thus the properties of sub-goals can be obtained and proved easily. Another 
recent work KeY-C[25,26] based on KeY[27] is a tool for deductive verification of programs written in a subset of C. 
KeY is an interactive theorem proving environment and KeY-C use the calculus of C Dynamic Logic which is based 
on first-order logic extended with a type system. Compared with our approach, systems that employ interactive 
proof assistants have the advantage that even difficult proofs can be discharged with enough manual effort, but our 
point of view is that only systems that use fully automated theorem prover take chance of widespread acceptance. 
And we used the calculus of Pointer Logic which is an extension of Hoare logic. The features of Pointer Logic make 
it strong in manipulating pointer related information, such as reasoning with pointer aliasing. 

9   Conclusion 

The work presented in this paper is targeted towards proving functional correctness of sequential program code 
and adopts the automated theorem-proving approach to formal verification. We proposed a method for designing 
automated theorem prover handling proof obligations with pointers and a prototype implementation for Pointer 
Logic. We have demonstrated that several small but non-trivial programs in our C-like programming language can 
be verified efficiently by using a special theorem prover called APL, and reduced the problem to validity of 
formulas in Pointer Logic. 

In a near future, we plan to add support for arrays and floating-point arithmetic and improve the Cooper’s 
algorithm used currently to make the APL system more usable and improve its efficiency and its expressiveness. 
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